Cho x, y là các số thực dương thỏa mãn \(\ln \frac{{\sqrt {1 + xy} }}{{x + y}} = \frac{{{x^2} + {y^2} + xy - 1}}{2}\). Biết giá trị lớn nhất của của biểu thức \(P = \frac{{xy}}{{x + y}}\) bằng \(\frac{{\sqrt a }}{b}\) trong đó a là số nguyên tố. Tính ab2
A. 80
B. 180
C. 48
D. 108
Lời giải của giáo viên
ToanVN.com
Với x, y > 0 ta có \(\ln \frac{{\sqrt {1 + xy} }}{{x + y}} = \frac{{{x^2} + {y^2} + xy - 1}}{2} \Leftrightarrow \ln \frac{{1 + xy}}{{{{\left( {x + y} \right)}^2}}} = {\left( {x + y} \right)^2} - \left( {xy + 1} \right)\)
\( \Leftrightarrow \ln \left( {1 + xy} \right) + \left( {1 + xy} \right) = \ln {\left( {x + y} \right)^2} + {\left( {x + y} \right)^2}\,\,\left( 1 \right)\)
Xét hàm số \(f\left( u \right) = \ln u + u\,\,\,\,\left( {u > 0} \right)\) có \(f'\left( u \right) = \frac{1}{u} + 1 > 0,\forall u > 0 \Rightarrow \) hàm số f(u) đồng biến trên khoảng \(\,\left( {0; + \infty } \right)\).
Khi đó \(\left( 1 \right) \Leftrightarrow f\left( {1 + xy} \right) = f{\left( {x + y} \right)^2}\) \( \Leftrightarrow 1 + xy = {\left( {x + y} \right)^2} \Leftrightarrow {\left( {x + y} \right)^2} - xy = 1.\)
Đặt \(t = x + y\left( {t > 0} \right) \Rightarrow xy = {t^2} - 1\). Khi đó \(P = \frac{{{t^2} - 1}}{t}\).
Áp dụng bất đẳng thức \(xy \le {\left( {\frac{{x + y}}{2}} \right)^2} \Rightarrow {t^2} - 1 \le \frac{{{t^2}}}{4} \Rightarrow {t^2} \le \frac{4}{3} \Rightarrow t \in \left( {0;\frac{2}{{\sqrt 3 }}} \right]\).
Xét hàm số \(f\left( t \right) = \frac{{{t^2} - 1}}{t}\) với \(t \in \left( {0;\frac{2}{{\sqrt 3 }}} \right]\). Ta có \(f'\left( t \right) = \frac{{{t^2} + 1}}{{{t^2}}} > 0,\forall t \Rightarrow \) Hàm số f(t) đồng biến trên \(\left( {0;\frac{2}{{\sqrt 3 }}} \right]\).
\( \Rightarrow \mathop {\max }\limits_{\left( {0;\frac{2}{{\sqrt 3 }}} \right]} f\left( t \right) = f\left( {\frac{2}{{\sqrt 3 }}} \right) = \frac{{\sqrt 3 }}{6} \Rightarrow \left\{ \begin{array}{l} a = 3\\ b = 6 \end{array} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt cầu (P) có phương trình \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 11 = 0\). Tọa độ tâm T của (P) là.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AA' = a,AD = 2a. Gọi góc giữa đường chéo A'C và mặt phẳng đáy (ABCD) là \(\alpha\). Khi đó \(\tan \alpha\) bằng
.png)
Trong không gian hệ tọa độ Oxyz, cho điểm A(1;-1;2). Phương trình mặt phẳng (Q) đi qua các hình chiếu của điểm A trên các trục tọa độ là
Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Tính thể tích V của khối nón đã cho.
Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( \alpha \right):x - 2y + 3z + 2018 = 0\) có một véctơ pháp tuyến là
Cho số phức z thỏa mãn điều kiện \(\left( {1 + i} \right)\bar z - 1 - 3i = 0\). Tìm phần ảo của số phức \(w = 1 - zi + \bar z\).
Cho cấp số cộng (un) với u1 = 2 và công sai d = 1. Khi đó u3 bằng
Cho hàm số y = f(x) là hàm số chẵn, liên tục trên R và số thực a dương thỏa \(\int\limits_0^a {f\left( x \right){\rm{d}}x = 3} \). Tính \(I = \int\limits_{ - a}^a {\left( {f\left( x \right) - x} \right){\rm{d}}x} \).
Tính diện tích hình phẳng được giới hạn bởi hai đồ thị \(y = - {x^2} + 2{\rm{x}} + 1\); \(y = 2{{\rm{x}}^2} - 4{\rm{x}} + 1\).
Trong không gian Oxyz, phương trình nào dưới đây khôngphải là phương trình đường thẳng đi qua hai điểm A(4;2;0), B(2;3;1).
Cho số thực a > 1. Gọi A, B, C lần lượt là các điểm thuộc đồ thị các hàm số \(y = {a^x};\,y = {\left( {\frac{1}{a}} \right)^x};y = {\log _{\frac{1}{a}}}x.\) Biết tam giác ABC vuông cân đỉnh A, AB = 4 và đường thẳng AC song song với trục Oy. Khi đó giá trị a bằng:
Xếp ngẫu nhiên 4 bạn nam và 5 bạn nữ ngồi vào 9 cái ghế kê theo một hàng ngang. Xác suất để có được 5 bạn nữ ngồi cạnh nhau là:
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):2x - y + z - 3 = 0\) cắt nhau theo giao tuyến là đường thẳng \(\left( \Delta \right)\). Một véc tơ chỉ phương của \(\left( \Delta \right)\) có tọa độ là
Cho x, y, z là các số thực không âm thỏa \({2^x} + {2^y} + {2^z} = 4\). Giá trị nhỏ nhất của biểu thức P = x +y + z?


