Cho tứ diện \(ABCD\). Gọi M, N lần lượt là trung điểm của AC và BC Trên đoạn BD lấy P sao cho \(BP{\rm{ }} = {\rm{ }}2{\rm{ }}PD\). Khi đó giao điểm của đường thẳng CD với mp (MNP) là:
A. Giao điểm của MP và CD
B. Giao điểm của NP và CD
C. Giao điểm của MN và CD
D. Trung điểm của CD
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho phương trình \({(4 + \sqrt {15} )^x} + (2m + 1){(4 - \sqrt {15} )^x} - 6 = 0.\) Để phương trình có hai nghiệm phân biệt \(x_1, x_2\) thỏa mãn \({x_1} - 2{\rm{ }}{x_2} = 0.\) Ta có m thuộc khoảng nào?
Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.
Cho hình chóp \(S.ABCD\) có \(AB = 5\sqrt 3 \) , \(BC =3\sqrt 3 \), góc \(\widehat {BAD} = \widehat {BCD} = {90^0}\), SA = 9 và SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD bằng \(66\sqrt 3 \), tính cotang của góc giữa mặt phẳng (SBD) và mặt đáy.
.png)
Hình vẽ bên thể hiện đồ thị của ba trong bốn hàm số \(y = {6^x},y = {8^x},y = \frac{1}{{{5^x}}}\) và \(y = \frac{1}{{{{\sqrt 7 }^x}}}.\)
.png)
Hỏi (C2) là đồ thị hàm số nào?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x + 3y – 4z +7 = 0. Tìm tọa độ véc tơ pháp tuyến của (P).
Cho \(a,b\) là các số dương lớn hơn 1, thay đổi thỏa mãn \(a + b = 2019\) để phương trình \(5{\log _a}x.{\log _b}x - 4{\log _a}x - 3{\log _b}x - 2019 = 0\) luôn có hai nghiệm phân biệt \({x_1},{x_2}\). Biết giá trị lớn nhất của \(\ln \left( {{x_1}{x_2}} \right)\) bằng \(\frac{3}{5}\ln \left( {\frac{m}{7}} \right) + \frac{4}{5}\ln \left( {\frac{n}{7}} \right)\), với \(m, n\) là các số nguyên dương. Tính \(S = m + 2n.\)
Phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{ - x + 3}}{{x - 1}}\) tại điểm có hoành độ \(x= 0\) là
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Gọi P là điểm trên cạnh SC sao cho \(SC = 5SP.\) Một mặt phẳng \((\alpha )\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi \(V_1\) là thể tích của khối chóp S.AMPN. Tìm giá trị lớn nhất của \(\frac{{{V_1}}}{V}\).
Thể tích vật tròn xoay khi quay hình phẳng (H) xác định bởi các đường \(y = \frac{1}{3}{x^3} - {x^2},y = 0,x = 0\), \(x = 3\) quanh trục Ox là
Cho hàm số \(y = f\left( x \right)\) liên tục trên R. Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(g\left( x \right) = f\left( {x - 1} \right) + \frac{{2019 - 2018x}}{{2018}}\) đồng biến trên khoảng nào dưới đây?
Cho tam giác ABC có \(A\left( {1;{\rm{ }} - 1} \right),{\rm{ }}B\left( {2;{\rm{ }}5} \right),{\rm{ }}C\left( {4;{\rm{ }} - 3} \right)\). Lập phương trình đường thẳng chứa đường trung tuyến đỉnh A của tam giác ABC.
Cho x, y là các số thực dương tùy ý, đặt \({\log _3}x = a,{\rm{ }}{\log _3}y = b\). Chọn mệnh đề đúng.
Nếu \(F'\,(x) = \frac{1}{{2x - 1}}\) và \(F(1) = 1\) thì giá trị của \(F(4)\) bằng
Hình lập phương có đường chéo bằng a thì có thể tích bằng
.png)


