Cho tam giác ABC đều cạnh \(a\), đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC). Gọi S là điểm thay đổi trên đường thẳng d, H là trực tâm tam giác SBC. Biết rằng khi điểm S thay đổi trên đường thẳng d thì điểm H nằm trên đường (C). Trong số các mặt cầu chứa đường (C), bán kính mặt cầu nhỏ nhất là
A. \(\frac{{a\sqrt 2 }}{2}\)
B. \(a\)
C. \(\frac{{a\sqrt 3 }}{{12}}\)
D. \(\frac{{a\sqrt 3 }}{6}\)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A( - 1; - 1;0);B(3;1; - 1)\). Điểm M thuộc trục Ox và cách đều hai điểm A, B có tọa độ là:
Cho hàm số \(y=f(x)\) có bảng biến thiên:
.png)
Tìm tất cả các giá trị của m để bất phương trình \(f\left( {\sqrt {x - 1} + 1} \right) \le m\) có nghiệm?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A(1;2; - 1);B(2;1;0)\) và mặt phẳng \(\left( P \right):2x + y - 3z + 1 = 0\). Gọi (Q) là mặt phẳng chứa A, B và vuông góc với (P). Phương trình mặt phẳng (Q) là:
Cho \(0 < a < 1\). Trong các mệnh đề sau, mệnh đề nào sai:
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của m để \(\left( P \right) \bot \left( Q \right)\) là:
Hàm số \(y = f\left( x \right) = \left( {x - 1} \right).\left( {x - 2} \right).\left( {x - 3} \right)...\left( {x - 2018} \right)\) có bao nhiêu điểm cực đại?
Cho hình lập phương \(ABCD.A'B'C'D'\). Tính góc giữa hai đường thẳng AC và A'B.
Thiết diện qua trục của một hình trụ là một hình vuông có cạnh bằng \(2a\). Thể tích khối trụ bằng:
Hệ số của số hạng chứa \(x^7\) trong khai triển nhị thức \({\left( {x - \frac{2}{{x\sqrt x }}} \right)^{12}}\) (với \(x>0\)) là:
Trong các dãy số \(\left( {{u_n}} \right)\) sau đây; hãy chọn dãy số giảm:
Cho phương trình: \({\sin ^3}x - 3{\sin ^2}x + 2 - m = 0\). Có bao nhiêu giá trị nguyên của m để phương trình có nghiệm:
Đồ thị hàm số nào dưới đây có tâm đối xứng là điểm \(I\left( {1; - 2} \right)\)?
Biết đường thẳng \(y=x-2\) cắt đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) tại hai điểm phân biệt A, B có hoành độ lần lượt \({x_A},{x_B}\) Khi đó \({x_A} + {x_B}\) là:
Số nghiệm của phương trình: \({\log _2}x + 3{\log _x}2 = 4\) là:


