Lời giải của giáo viên
ToanVN.com
Đặt \({\log _3}x = t\), phương trình trở thành \({t^2} - 4t + m - 3 = 0\,\,\left( * \right)\)
Phương tình đã cho có hai nghiệm phân biệt thỏa mãn \({x_1} > {x_2} > 1\) nếu phương trình (*) có hai nghiệm phân biệt thỏa mãn \(t_1>t_2>0\)
\( \Leftrightarrow \left\{ \begin{array}{l}
\Delta ' = 4 - m + 3 > 0\\
S = 4 > 0\\
P = m - 3 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < 7\\
m > 3
\end{array} \right. \Leftrightarrow 3 < m < 7\)
Do \(m\in Z\) nên \(m \in \left\{ {4;5;6} \right\} \Rightarrow \) có 3 giá trị thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm giá trị cực đại yCĐ và giá trị cực tiểu \(y_{CT}\) của hàm số đã cho.
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích khối chóp S.ABC
Đạo hàm của hàm số \(y = {\log _8}\left( {{x^3} - 3x - 4} \right)\) là
Có tất cả bao nhiêu giá trị thực của tham số m để đường thẳng \(d:y = mx + 1\) cắt đồ thị \(\left( C \right):{x^3} - {x^2} + 1\) tại ba điểm \(A;B\left( {0;1} \right);C\) phân biệt sao cho tam giác AOC vuông tại \(O\left( {0;0} \right)\)?
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{x + 1}}{{\left| x \right| - 2x + 1}}\) là
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Một hình nón có đỉnh là tâm của hình vuông A'B'C'D' và có đường tròn đáy ngoại tiếp hình vuông ABCD. Tính diện tích xung quanh của hình nón đó.
Trong hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng \(\left( P \right):2x + y + 2z - 8 = 0\), \(\left( Q \right):x - 4y + z - 4 = 0\). Viết phương trình đường thẳng d đi qua A và song song với cả hai mặt phẳng (P), (Q).
Trong hệ tọa độ Oxyz, cho đường thẳng \(\Delta = \frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\). Điểm I nằm trên \(\Delta\) thì điểm M có dạng nào sau đây?
Trong hệ tọa độ Oxyz, cho ba điểm \(A\left( {1;0;0} \right);B\left( {0; - 1;0} \right);C\left( {0;0;2} \right)\). Phương trình mặt phẳng (ABC) là
Trong các hàm số dưới đây, hàm số nào đồng biến trên tập R?
Cho số phức \(\overline z = 3 + 2i\). Tìm phần thực và phần ảo của số phức z.
Cho các số phức z thỏa mãn \(\left| z \right| = 2\). Biết rằng tập hợp các điểm biểu diễn số phức \(w = 3 - 2i + \left( {4 - 3i} \right)z\) là một đường tròn. Tính bán kính r của đường tròn đó
Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau \({d_1}:\frac{{x - 2}}{2} = \frac{{y + 2}}{1} = \frac{{z - 6}}{{ - 2}}\) và \({d_2}:\frac{{x - 4}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 1}}{3}\). Phương trình mặt phẳng (P) chứa \(d_1\) và song song với \(d_2\) là:
Cho \(\int\limits_0^1 {\frac{{{9^x} + 3m}}{{{9^x} + 3}}dx} = {m^2} - 1\). Tính tổng tất cả các giá trị của tham số m.


