Cho khối tứ diện \(ABCD\) có \(AB,\;AC,\;AD\) đôi một vuông góc với nhau và \(AB = a,\;AC = 2a,\;AD = 3a.\) Các điểm \(M,\;N,\;P\) thứ tự thuộc các cạnh \(AB,\;AC,\;AD\) sao cho \(2AM = MB,\;AN = 2NC,\;AP = PD.\) Tính thể tích khối tứ diện \(AMNP.\)
A. \(\dfrac{{2{a^3}}}{9}\)
B. \({a^3}\)
C. \(\dfrac{{{a^3}}}{9}\)
D. \(\dfrac{{2{a^3}}}{3}\)
Lời giải của giáo viên
ToanVN.com
Ta có: \({V_{ABCD}} = \dfrac{1}{6}AB.AC.AD = \dfrac{1}{6}.a.2a.3a = {a^3}.\)
Theo đề bài ta có: \(\left\{ \begin{array}{l}2AM = MB\\AN = 2NC\\AP = PD\end{array} \right. \Rightarrow \dfrac{{AM}}{{AB}} = \dfrac{1}{3};\;\dfrac{{AN}}{{AC}} = \dfrac{2}{3};\;\dfrac{{AP}}{{AD}} = \dfrac{1}{2}.\)
Áp dụng công thức tính tỉ lệ thể tích ta có:
\(\dfrac{{{V_{AMNP}}}}{{{V_{ABCD}}}} = \dfrac{{AM}}{{AB}}.\dfrac{{AN}}{{AC}}.\dfrac{{AP}}{{AD}} = \dfrac{1}{3}.\dfrac{2}{3}.\dfrac{1}{2} = \dfrac{1}{9} \Rightarrow {V_{AMNP}} = \dfrac{1}{9}{V_{ABCD}} = \dfrac{{{a^3}}}{9}.\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(y = \dfrac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {2; + \infty } \right)?\)
Cho hai phương trình \({x^2} + 7x + 3 - \ln \left( {x + 4} \right) = 0\,\,\,\left( 1 \right)\) và \({x^2} - 11x + 21 - \ln \left( {6 - x} \right) = 0\,\,\left( 2 \right)\). Đặt T là tổng các nghiệm phân biệt của hai phương trình đã cho, ta có
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{4x}} - 2}}{{x - 2}}\;\;khi\;\;x \ne 2\\ax + 3\;\;khi\;\;x = 2\end{array} \right..\) Xác định \(a\) để hàm số liên tục trên \(R.\)
Cho a là số thực dương, \(a \ne 1\). Biết bất phương trình \({\log _a}x \le 3x - 3\) nghiệm đúng với mọi \(x > 0\). Số a thuộc tập hợp nào sau đây ?
Trong mặt phẳng tọa độ Oxy cho điểm \(I\left( {1;2} \right)\) và đường thẳng \(\left( d \right):\,\,2x + y - 5 = 0\). Biết rằng có hai điểm \({M_1},{M_2}\) thuộc \(\left( d \right)\) sao cho \(I{M_1} = I{M_2} = \sqrt {10} \). Tổng các hoành độ của \({M_1}\) và \({M_2}\) là:
Cho hình nón có đường cao bằng bán kính đáy và bằng 15. Diện tích xung quanh của mặt nón đã cho là:
Tìm các giá trị của tham số m \(\left( {m \in R} \right)\) để phương trình \({x^2} + \dfrac{1}{{{x^2}}} - \left( {{m^2} + m + 2} \right)\left( {x + \dfrac{1}{x}} \right) + {m^3} + 2m + 2 = 0\) có nghiệm thực:
Trong mặt phẳng \(Oxy\) cho tam giác \(ABC\) có đỉnh \(A\left( {5;\;5} \right),\) trực tâm \(H\left( { - 1;\;13} \right),\) đường tròn ngoại tiếp tam giác \(ABC\) có phương trình \({x^2} + {y^2} = 50.\) Biết tọa độ đỉnh \(C\) là \(C\left( {a;\;b} \right)\) với \(a < 0.\) Tổng \(a + b\) bằng:
Biết rằng tập nghiệm của bất phương trình \(\sqrt {2x + 4} - 2\sqrt {2 - x} \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\) là \(\left[ {a;b} \right]\). Khi đó giá trị của biểu thức \(P = 3a - 2b\) bằng:
Tổng tất cả các giá trị thực của tham số m để hàm số \(y = 3{x^3} + 2\left( {m + 1} \right){x^2} - 3mx + m - 5\) có hai điểm cực trị \({x_1},\;{x_2}\) đồng thời \(y\left( {{x_1}} \right).y\left( {{x_2}} \right) = 0\) là:
Cho hàm số \(y = \dfrac{{x - 2019}}{{x + 1}}\) và các mệnh đề sau :(1) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cân ngang là đường thẳng \(y = 1\).(2) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2019\) và tiệm cận ngang là đường thẳng \(y = 1\).(3) Hàm số đồng biến trên mỗi khoảng xác định của nó.(4) Hàm số nghịch biến trên mỗi khoảng xác định của nó.Số mệnh đề đúng trong các mệnh đề trên là:
Có tất cả bao nhiêu giá trị nguyên của m trên miền \(\left[ { - 10;10} \right]\) để hàm số \(y = {x^4} - 2\left( {2m + 1} \right){x^2} + 7\) có ba điểm cực trị?
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( {\dfrac{1}{2}} \right)^n} + 1,\,\,\,\forall n \in {N^*}\). Tính \({S_{2019}} = {u_1} + {u_2} + {u_3} + ... + {u_{2019}}\), ta được kết quả
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(4f\left( x \right) - 5 = 0\) là:
Từ các chữ số \(1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9\) có thể lập được tất cả bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau?


