Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,\,AB = a,\,AC = 2a,\,SA \bot \left( {ABC} \right)\) và \(SA = a.\) Thể tích khối nón đã cho bằng
A. \(\dfrac{{\sqrt 3 {a^3}}}{3}\)
B. \(\dfrac{{\sqrt 3 {a^3}}}{6}\)
C. \(\dfrac{{{a^3}}}{3}\)
D. \(\dfrac{{2{a^3}}}{3}\)
Lời giải của giáo viên
ToanVN.com
Tam giác ABC vuông tại B \( \Rightarrow BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {{{\left( {2a} \right)}^2} - {a^2}} = a\sqrt 3 \)
Diện tích tam giác ABC là : \({S_{ABC}} = \dfrac{1}{2}.AB.BC = \dfrac{1}{2}.a.a\sqrt 3 = \dfrac{{\sqrt 3 }}{2}.{a^2}\)
Thể tích khối chóp S.ABC là : \({V_{S.ABC}} = \dfrac{1}{3}.{S_{ABC}}.SA = \dfrac{1}{3}.\dfrac{{\sqrt 3 }}{2}.{a^2}.a = \dfrac{{\sqrt 3 }}{6}{a^3}\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho các điểm \(A\left( { - 1;2;1} \right),\,\,B\left( {2; - 1;4} \right),\,\,C\left( {1;1;4} \right)\). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABC} \right)\)?
Cho tứ diện \(ABCD\) có \(AB = CD = a.\) Gọi \(M,\;N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(MN = \dfrac{{\sqrt 3 a}}{2},\) góc giữa đường thẳng\(AB\) và \(CD\) bằng:
Cho hàm số \(y = \frac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\). Xét các điểm A, B thuộc \(\left( P \right)\) sao cho tiếp tuyến tại A và B của \(\left( P \right)\) vuông góc với nhau, diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \({x_1},\,\,{x_2}\) lần lượt là hoành độ của A và B. Giá trị của \({\left( {{x_1} + {x_2}} \right)^2}\) bằng:
Cho khối nón có chiều cao bằng \(2a\) và bán kính đáy bằng \(a\) . Thể tích của khối nón đã cho bằng
Cho số phức \(z\) thỏa mãn \(\left( {2 + 3i} \right)z + 4 - 3i = 13 + 4i.\) Mô đun của \(z\) bằng
Trong không gian \({\rm{Ox}}yz,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right):\,2y - 3z + 1 = 0?\)
Trong không gian \({\rm{Ox}}yz\) , cho hai điểm \(A\left( {1; - 1;2} \right)\) và \(B\left( {3;3;0} \right)\) . Mặt phẳng trung trực của đường thẳng \(AB\) có phương trình là
Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng:
Trong không gian \({\rm{Ox}}yz,\) cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\) .Trung điểm của đoạn thẳng \(AB\) có tọa độ là:
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị \(\left( C \right)\) . Hệ số góc \(k\) của tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng 1 bằng
Cho \(\left( {{u_n}} \right)\)là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10.\) Công sai của cấp số cộng đã cho bằng
Cho các số thực dương \(x,\;y \ne 1\) và thỏa mãn \({\log _x}y = {\log _y}x,\;\;{\log _x}\left( {x - y} \right) = {\log _y}\left( {x + y} \right).\) Giá trị của \({x^2} + xy - {y^2}\) bằng:
Trong không gian \(Oxyz,\) gọi \(d\) là đường thẳng qua \(A\left( {1;\;0;\;2} \right)\) cắt và vuông góc với đường thẳng \({d_1}:\;\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 5}}{{ - 2}}.\) Điểm nào dưới đây thuộc \(d?\)
Trong không gian \(Oxyz,\) điểm nào dưới đây thuộc đường thẳng \(\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 2}}{3}?\)


