Cho hình trụ có chiều cao bằng \(4\sqrt 2 \). Cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \(\sqrt2\), thiết diện thu được có diện tích bằng 16. Diện tích xung quanh của hình trụ đã cho bằng
A. \(24\sqrt 2 \pi \)
B. \(8\sqrt 2 \pi \)
C. \(12\sqrt 2 \pi \)
D. \(16\sqrt 2 \pi \)
Lời giải của giáo viên
ToanVN.com
.png)
Cắt hình trụ đã cho bởi một mặt phẳng song song với trục, ta được thiết diện là hình chữ nhật ABCD (với AB là dây cung của hình tròn tâm O). Do hình trụ có chiều cao là \(h = OO' = 4\sqrt 2 \Rightarrow \) hình trụ có độ dài đường sinh \(l = AD = 4\sqrt 2 \).
Diện tích hình chữ nhật ABCD bằng \(AB.CD = 16 \Rightarrow AB = \frac{{16}}{{AD}} = \frac{{16}}{{4\sqrt 2 }} = 2\sqrt 2 \). Gọi K là trung điểm đoạn AB thì \(OK \bot AB\), lại có mặt phẳng (ABCD) vuông góc với mặt phẳng đáy của hình trụ \(\Rightarrow OK \bot mp\left( {ABCD} \right) \Rightarrow\) khoảng cách giữa OO' và mặt phẳng (ABCD) là \(OK = \sqrt 2 \). Xét tam giác vuông AOK
\(R = OA = \sqrt {O{K^2} + A{K^2}} = \sqrt {O{K^2} + {{\left( {\frac{{AB}}{2}} \right)}^2}} = \sqrt {{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} = 2\)
Diện tích xung quanh của hình trụ là \(S = 2\pi R.l = 2\pi .2.4\sqrt 2 = 16\pi \sqrt 2 \)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có \(f\left( {\frac{\pi }{2}} \right) = 0\) và \(f'(x) = sinx.si{n^2}2x,\forall x \in R\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f(x)dx} \) bằng
Cho hàm số y = f(x) có bảng biến thiên như sau. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Cho hàm số f(x) thỏa mãn \(f'\left( x \right) = \left( {x + 1} \right){e^x}\) và f(0) = 1. Tính f(2).
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;1;-1) trên trục Oy có tọa độ là
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình vẽ a, b, c là các số nguyên. Giá trị của biểu thức T = a - 3b + 2c bằng:
.png)
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị là đường cong trong hình vẽ bên.
.png)
Đặt g(x) = f[f(x)] Tìm số nghiệm của phương trình g'(x) = 0
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
.png)
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\), với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên R?
Cho hình trụ có đường cao bằng 8a. Một mặt phẳng song song với trục và cách trục hình trụ 3a, cắt hình trụ theo thiết diện là hình vuông. Diện tích xung quanh và thể tích khối trụ bằng
Biết \({\int\limits_0^1 {f\left( x \right)dx} }=2\) và \({\int\limits_0^1 {g\left( x \right)dx} } = -4\), khi đó \({\int\limits_0^1 [{f\left( x \right)} }+g(x)]dx\) bằng
Cho phương trình \(lo{g_9}{x^2} - {\log _3}\left( {3x - 1} \right) = - {\log _3}m\). Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có nghiệm?
Cho hàm số bậc ba \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình sau:
.png)
Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} - 3x + 2} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
Cho hàm số \(y = \left| {\frac{{{x^4} + ax + a}}{{x + 1}}} \right|\). Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn [1;2]. Có bao nhiêu giá trị nguyên của a để \(M \ge 2m\).


