Cho hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\) và trục hoành gồm 2 phần, phần nằm phía trên trục hoành có diện tích \({{S}_{1}}=\frac{8}{3}\) và phần nằm phía dưới trục hoành có diện tích \({{S}_{2}}=\frac{5}{12}\). Tính \(I=\int\limits_{-1}^{0}{f\left( 3x+1 \right)\text{d}x}\).
.jpg.png)
A. \(I = \frac{{27}}{4}\)
B. \(I = \frac{5}{3}\)
C. \(I = \frac{3}{4}\)
D. \(I = \frac{{37}}{{36}}\)
Lời giải của giáo viên
ToanVN.com
Ta có \(\frac{8}{3}={{S}_{1}}=\int\limits_{-2}^{0}{f\left( x \right)\text{d}x};\,\,\,\,\,\,\,\,\,\frac{12}{5}={{S}_{2}}=-\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\Rightarrow \int\limits_{0}^{1}{f\left( x \right)\text{d}x}=-\frac{12}{5}.\)
Tính \(I=\int\limits_{-1}^{0}{f\left( 3x+1 \right)\text{d}x}\)
Đặt \(t=3x+1\Rightarrow \text{d}x=\frac{1}{3}\text{d}t\).
Đổi cận: \(x=-1\Rightarrow t=-2,\,\,x=0\Rightarrow t=1\).
\( \Rightarrow I = \frac{1}{3}\int\limits_{ - 2}^1 {f\left( t \right){\rm{d}}t} = \frac{1}{3}\left( {\int\limits_{ - 2}^0 {f\left( t \right){\rm{d}}t} + \int\limits_0^1 {f\left( t \right){\rm{d}}t} } \right) = \frac{1}{3}\left( {\frac{8}{3} - \frac{5}{{12}}} \right) = \frac{3}{4}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Nghiệm của bất phương trình \({{3}^{x+2}}\ge \frac{1}{9}\) là
Cho số phức \(z=-1+2i\,,\,w=2-i\). Điểm nào trong hình bên biểu diễn số phức z+w?
.jpg.png)
Trong không gian Oxyz, mặt phẳng \(\left( \alpha \right):x-y+2z-3=0\) đi qua điểm nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có bảng xét dấu \({f}'\left( x \right)\) như sau
.png)
Mệnh đề nào sau đây sai?
Cho số phức \({{z}_{1}}=1+i\) và \({{z}_{2}}=2-3i\). Tìm số phức liên hợp của số phức \(\text{w}={{z}_{1}}+{{z}_{2}}\)?
Cho hàm số \(f\left( x \right)=\frac{1}{4}{{x}^{4}}-m{{x}^{3}}+\frac{3}{2}\left( {{m}^{2}}-1 \right){{x}^{2}}+\left( 1-{{m}^{2}} \right)x+2019\) với m là tham số thực. Biết rằng hàm số \(y=f\left( \left| x \right| \right)\) có số điểm cực trị lớn hơn 5 khi \(a<{{m}^{2}}<b+2\sqrt{c}\,\left( a,\,b,\,c\,\in \mathbb{R} \right)\). Tích abc bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, \(SA\bot \left( ABCD \right)\). Gọi I là trung điểm của SC. Khoảng cách từ $I$ đến mặt phẳng \(\left( ABCD \right)\) bằng độ dài đoạn thẳng nào?
Trong không gian tọa độ Oxyz, đường thẳng \(\left( d \right):\frac{x+5}{2}=\frac{y-7}{-8}=\frac{z+13}{9}\) có một véc tơ chỉ phương là
Trong không gian Oxyz, cho hai điểm \(A\left( 2\,;\,3\,;\,-5 \right), B\left( -4\,;\,1\,;\,3 \right)\). Viết phương trình mặt cầu đường kính AB.
Giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{{{x}^{2}}-8x}{x+1}\) trên đoạn \(\left[ 1;3 \right]\) bằng
Giá trị của tích phân \(I=\int\limits_{0}^{1}{\frac{x}{x+1}}\text{d}x\) là
Cho hàm số \(f\left( x \right)={{2}^{x}}+x+1\). Tìm \(\int{f\left( x \right)\text{d}x}\)
Đường tiệm cận ngang, đường tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-2}\) lần lượt có phương trình là
Bất phương trình \({{4}^{x-15}}<32\) có bao nhiêu nghiệm nguyên dương?
Cho tứ diện ABCD có AC=AD và BC=BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?


