Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác đều cạnh bằng a và \(\left( {A}'BC \right)\) hợp với mặt đáy ABC một góc \(30{}^\circ \). Tính thể tích V của khối lăng trụ \(ABC.{A}'{B}'{C}'\).
A. \(V= \frac{{3{a^3}}}{8}\)
B. \(V = \frac{{{a^3}\sqrt 3 }}{8}\)
C. \(V = \frac{{{a^3}\sqrt 3 }}{{12}}\)
D. \(V = \frac{{{a^3}\sqrt 3 }}{{24}}\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi M là trung điểm của BC. Ta có \(\left\{ {\begin{array}{*{20}{c}} {BC \bot AA'}\\ {BC \bot AM} \end{array}} \right. \Rightarrow BC \bot \left( {A'MA} \right) \Rightarrow BC \bot A'M\)
\( \Rightarrow \widehat {\left( {\left( {A'BC} \right),\left( {ABC} \right)} \right)} = \widehat {A'MA} = 30^\circ \)
Vì \(AB=a\Rightarrow AM=\frac{a\sqrt{3}}{2}.\Rightarrow \tan \widehat{{A}'MA}=\frac{A{A}'}{AM}\Rightarrow A{A}'=\tan \widehat{{A}'BA}.AM=\tan 30{}^\circ .\frac{a\sqrt{3}}{2}=\frac{a}{2}\).
Vậy thể tích của \(ABC.{A}'{B}'{C}'\) là:
\({{V}_{ABC.{A}'{B}'{C}'}}=A{A}'.{{S}_{{A}'{B}'{C}'}}=\frac{a}{2}.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{{{a}^{3}}\sqrt{3}}{8}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Nghiệm của bất phương trình \({{3}^{x+2}}\ge \frac{1}{9}\) là
Cho số phức \(z=-1+2i\,,\,w=2-i\). Điểm nào trong hình bên biểu diễn số phức z+w?
.jpg.png)
Trong không gian Oxyz, mặt phẳng \(\left( \alpha \right):x-y+2z-3=0\) đi qua điểm nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có bảng xét dấu \({f}'\left( x \right)\) như sau
.png)
Mệnh đề nào sau đây sai?
Cho số phức \({{z}_{1}}=1+i\) và \({{z}_{2}}=2-3i\). Tìm số phức liên hợp của số phức \(\text{w}={{z}_{1}}+{{z}_{2}}\)?
Cho hàm số \(f\left( x \right)=\frac{1}{4}{{x}^{4}}-m{{x}^{3}}+\frac{3}{2}\left( {{m}^{2}}-1 \right){{x}^{2}}+\left( 1-{{m}^{2}} \right)x+2019\) với m là tham số thực. Biết rằng hàm số \(y=f\left( \left| x \right| \right)\) có số điểm cực trị lớn hơn 5 khi \(a<{{m}^{2}}<b+2\sqrt{c}\,\left( a,\,b,\,c\,\in \mathbb{R} \right)\). Tích abc bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, \(SA\bot \left( ABCD \right)\). Gọi I là trung điểm của SC. Khoảng cách từ $I$ đến mặt phẳng \(\left( ABCD \right)\) bằng độ dài đoạn thẳng nào?
Trong không gian tọa độ Oxyz, đường thẳng \(\left( d \right):\frac{x+5}{2}=\frac{y-7}{-8}=\frac{z+13}{9}\) có một véc tơ chỉ phương là
Trong không gian Oxyz, cho hai điểm \(A\left( 2\,;\,3\,;\,-5 \right), B\left( -4\,;\,1\,;\,3 \right)\). Viết phương trình mặt cầu đường kính AB.
Giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{{{x}^{2}}-8x}{x+1}\) trên đoạn \(\left[ 1;3 \right]\) bằng
Giá trị của tích phân \(I=\int\limits_{0}^{1}{\frac{x}{x+1}}\text{d}x\) là
Cho hàm số \(f\left( x \right)={{2}^{x}}+x+1\). Tìm \(\int{f\left( x \right)\text{d}x}\)
Biết rằng có duy nhất một cặp số thực \(\left( x;\ y \right)\) thỏa mãn \(\left( x+y \right)+\left( x-y \right)i=5+3i\). Tính S=x+2y.
Bất phương trình \({{4}^{x-15}}<32\) có bao nhiêu nghiệm nguyên dương?
Đường tiệm cận ngang, đường tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-2}\) lần lượt có phương trình là


