Câu hỏi Đáp án 3 năm trước 56

Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P lần lượt là trung điểm của AA', BC, CD. Mặt phẳng (MNP) chia khối hộp thành hai phần có thể tích là \(V_1, V_2\). Gọi \(V_1\) là thể tích phần chứa điểm C. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng  

A. \(\frac{{119}}{{25}}\)

Đáp án chính xác ✅

B. \(\frac{3}{4}\)

C. \(\frac{{113}}{{24}}\)

D. \(\frac{{119}}{{425}}\)

Lời giải của giáo viên

verified ToanVN.com

Trong (ABCD), gọi \(I = NP \cap AB,K = NP \cap AD\) 

Trong (ABB’A), gọi \(E = IM \cap BB'\) 

Trong (ADD’A’), gọi \(F = KM \cap DD'\) 

Thiết diện của hình hộp cắt bởi (MNP) là ngũ giác MENPF.

Ta có: \(\Delta INB = \Delta PNC \Rightarrow IN = NP\), tương trự:

\(\begin{array}{l}
KP = NP \Rightarrow IN = KP = NP\\
 \Rightarrow \frac{{IN}}{{IK}} = \frac{1}{3} \Rightarrow \frac{{IN}}{{IK}} = \frac{{BE}}{{AM}} = \frac{{IB}}{{IA}} = \frac{1}{3}\\
 \Rightarrow \frac{{{V_{E.IBN}}}}{{{V_{M.IAK}}}} = \frac{1}{{27}}
\end{array}\)   

Tương tự: \(\frac{{{V_{F.DPK}}}}{{{V_{M.IAK}}}} = \frac{1}{{27}} \Rightarrow \frac{{{V_2}}}{{{V_{M.IAK}}}} = 1 - \frac{1}{{27}} - \frac{1}{{27}} = \frac{{25}}{{27}} \Rightarrow {V_2} = \frac{{25}}{{27}}{V_{M.IAK}}\) 

Ta có: \(\Delta IAK\) đồng dạng \(\Delta NCP\) với tỉ số đồng dạng là 3 \( \Rightarrow {S_{\Delta AIK}} = 9.{S_{\Delta NCP}}\) 

Mà \({S_{\Delta NCP}} = \frac{1}{4}.\frac{1}{2}.{S_{ABCD}} = \frac{1}{8}{S_{ABCD}}\) 

\( \Rightarrow {S_{\Delta AIK}} = \frac{9}{8}{S_{ABCD}}\) 

Khi đó:

\(\begin{array}{l}
{V_{M.IAK}} = \frac{1}{2}.\frac{9}{8}.{V_{A'.ABCD}} = \frac{1}{2}.\frac{9}{8}.\frac{1}{3}.{V_{ABCD.A'B'C'D'}} = \frac{3}{{16}}{V_{ABCD.A'B'C'D'}}\\
 \Rightarrow {V_2} = \frac{{25}}{{27}}{V_{M.IAK}} = \frac{{25}}{{27}}.\frac{3}{{16}}{V_{ABCD.A'B'C'D'}} = \frac{{25}}{{144}}{V_{ABCD.A'B'C'D'}}\\
 \Rightarrow {V_1} = \frac{{119}}{{144}}{V_{ABCD.A'B'C'D'}} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{119}}{{25}}
\end{array}\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tính thể tích của khối hộp chữ nhật ABCD.A'B'C'D' có \(AB = 3,AC = 5,AA' = 5\)  

Xem lời giải » 3 năm trước 78
Câu 2: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đồ thị như hình bên. Giá trị cực tiểu của hàm số đã cho bằng

Xem lời giải » 3 năm trước 69
Câu 3: Trắc nghiệm

Xét các số phức z, w thỏa mãn \(\left| {z + 2 - 2i} \right| = \left| {z - 4i} \right|\) và \(w = iz + 1\). Giá trị nhỏ nhất của \(\left| w \right|\) bằng?

Xem lời giải » 3 năm trước 67
Câu 4: Trắc nghiệm

Điểm A trong hình vẽ bên là điểm biểu diễn của số phức z. Khi đó mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 66
Câu 5: Trắc nghiệm

Cho hàm số \(y=f(x)\) liên tục trên R và có đồ thị như hình vẽ bên.

Có bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {{x^2} - 2x} \right) = m\) có đúng 4 nghiệm thực phân biệt thuộc đoạn \(\left[ { - \frac{3}{2};\frac{7}{2}} \right]\)?        

Xem lời giải » 3 năm trước 65
Câu 6: Trắc nghiệm

Người ta xây một bể nước hình trụ (tham khảo hình vẽ bên) có bán kính R = 1m (tính từ tâm bể đến mép ngoài), chiều dày của thành bể là b = 0,05m, chiều cao của bể là h = 1,5 m. Tính dung tích của bể nước (làm tròn đến hai chữ số thập phân).    

Xem lời giải » 3 năm trước 65
Câu 7: Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác vuông tại B. Biết \(\Delta ABC\) đều và thuộc mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích khối chóp S.ABC biết \(AB = a,AC = a\sqrt 3 \) 

Xem lời giải » 3 năm trước 65
Câu 8: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên đoạn [- 1;3] và có đồ thị như hình vẽ bên. Gọi Mm lần lượt là GTLN và GTNN của hàm số đã cho trên [- 1;3]. Giá trị của P = m.M bằng?    

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau: 

Số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

Xem lời giải » 3 năm trước 64
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 1 = 0\) đi qua điểm nào dưới đây?  

Xem lời giải » 3 năm trước 64
Câu 11: Trắc nghiệm

Cho hàm số \(y=f(x)\) liên tục trên R và có đồ thị như hình bên. Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) là

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x + 2y - z + 4 = 0\) và các điểm \(A\left( {2;1;2} \right),B\left( {3; - 2;2} \right)\). Điểm M thuộc mặt phẳng (P) sao cho các đường thẳng MA, MB luôn tạo với mặt phẳng (P) một góc bằng nhau. Biết rằng điểm M luôn thuộc đường tròn (C) cố định. Tìm tọa độ tâm của đường tròn (C).

Xem lời giải » 3 năm trước 63
Câu 13: Trắc nghiệm

Cho \(\int\limits_0^1 {\frac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}} = a + b\ln 2 + c\ln 3} \) với a, b, c là các số hữu tỉ. Giá trị của \(a+b+c\) bằng:

Xem lời giải » 3 năm trước 63
Câu 14: Trắc nghiệm

Cho Parabol như hình vẽ bên. Diện tích hình phẳng giới hạn bởi Parabol và trục hoành bằng 

   

Xem lời giải » 3 năm trước 62
Câu 15: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha  \right):x + 2y + 3z - 6 = 0\) và đường thẳng

\(\Delta :\frac{{x + 1}}{{ - 1}} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{1}\). Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 62

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »