Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là \(a\sqrt 3 .\) Thể tích V của khối chóp đó là bao nhiêu?
A. \(V = \frac{{2\sqrt 2 }}{3}{a^3}.\)
B. \(V = \frac{{4\sqrt 2 }}{3}{a^3}.\)
C. \(V = \frac{{\sqrt 2 }}{6}{a^3}.\)
D. \(V = \frac{{\sqrt 2 }}{9}{a^3}.\)
Lời giải của giáo viên
ToanVN.com
Gọi hình chóp đã cho là \(S.ABCD\) có tất cả các cạnh bằng nhau và bằng x khi đó các mặt bên của hình chóp là các tam giác đều bằng nhau.
M là trung điểm BC thì SM là đường cao của mặt bên SBC nên \(SM = a\sqrt 3 \). Tam giác SBC đều cạnh x và đường cao \(SM = a\sqrt 3 \) nên\(\frac{{x\sqrt 3 }}{2} = a\sqrt 3 \Leftrightarrow x = 2a.\) Vậy \({S_{ABCD}} = 4{a^2}.\)
\(SO = \sqrt {S{M^2} - M{O^2}} = \sqrt {S{M^2} - {{\left( {\frac{{AB}}{2}} \right)}^2}} = \sqrt {{{(a\sqrt 3 )}^2} - {a^2}} = a\sqrt 2 \)
Vậy \({V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{{4\sqrt 2 }}{3}{a^3}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình chữ nhật tâm \(O\). Gọi \(M\) là trung điểm của \(OC\). Mặt phẳng \(\left( \alpha \right)\) qua \(M\) và \(\left( \alpha \right)\) song song với \(SA\) và \(BD\). Thiết diện của hình chóp \(S.ABCD\) và \(mp\left( \alpha \right)\) là hình gì?
Cho hàm số \(f\left( x \right) = a\sin x + b\cos x + 1\). Để \({f^/}\left( 0 \right) = \frac{1}{2}\) và \(f\left( { - \frac{\pi }{4}} \right) = 1\) thì giá trị của \(a,b\) bằng bao nhiêu?
Tìm số các chỉnh hợp chập \(k\) của một tập hợp gồm \(n\) phần tử \((1 \le k \le n).\)
Tìm \(m\) để hàm số \(y = \frac{{m{x^2} + 6x - 2}}{{x + 2}}\) nghịch biến trên \(\left[ {1; + \infty } \right).\)
Tính tổng các hệ số trong khai triển sau \({\left( {1 - 2x} \right)^{2018}}.\)
Trong măt phẳng \(Oxy\) cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm \(O\) tỉ số \(k = - 2\) biến điểm \(M\) thành điểm nào trong các điểm sau?
Nếu \(P(A).P(B) = P(A \cap B)\) thì \(A,B\) là 2 biến cố như thế nào?
Cho hàm số \(y = {x^4} - 2{x^2}\). Mệnh đề nào dưới đây là đúng?
Gọi \({x_1};{x_2}\) là các nghiệm của phương trình: \(12{x^2} - 6mx + {m^2} - 4 + \frac{{12}}{{{m^2}}} = 0\left( 1 \right)\). Tìm m sao cho \(x_1^3 + x_2^3\) đạt giá trị lớn nhất.
Cho hình chóp \(S.ABCD\), tứ giác \(ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AB = 2CD = 2AD\). Mệnh đề nào sau đây sai?
Cho tứ diện \(ABCD\). \(G\) là trọng tâm tam giác \(BCD\). Tìm giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right).\)
Cho hàm số \(y = (x + 3)({x^2} - 1)\) có đồ thị \(\left( C \right)\). Mệnh đề nào dưới đây đúng?
Tổng tất cả các nghiệm của phương trình \(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\) trên \(\left[ {0;\,\frac{\pi }{2}} \right]\) là \(T\) bằng bao nhiêu?
Cho chuyển động thẳng xác định bởi phương trình \(S = {t^3} + 3{t^2} - 9t + 27\), trong đó \(t\) tính bằng giây \(\left( s \right)\) và \(S\) được tính bằng mét \(\left( {\rm{m}} \right)\). Gia tốc của chuyển động tại thời điểm vận tốc triệt tiêu là bao nhiêu?
Cho dãy số \(\left( {{u_n}} \right)\) : \(\frac{1}{2}; - \frac{1}{2}; - \frac{3}{2}; - \frac{5}{2};...{\rm{ }}\) Khẳng định nào sau đây sai?


