Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a,\) cạnh bên bằng \(3a.\) Tính thể tích \(V\) của hình chóp đã cho.
A. \(V=4\sqrt{7}{{a}^{3}}.\)
B. \(V=\frac{4}{3}{{a}^{3}}.\)
C. \(V=\frac{4\sqrt{7}{{a}^{3}}}{3}.\)
D. \(V=\frac{4\sqrt{7}{{a}^{3}}}{9}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi \(O=AC\cap BD. \)
Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(SO\bot \left( ABCD \right).\)
Theo bài ra ta có: \(OA=\frac{1}{2}AC=a\sqrt{2}.\)
Xét tam giác \(SOA\) vuông tại \(O\) ta có: \(SO=\sqrt{S{{A}^{2}}-O{{A}^{2}}}=\sqrt{{{\left( 3a \right)}^{2}}-{{\left( a\sqrt{2} \right)}^{2}}}=a\sqrt{7}.\)
Diện tích hình vuông \(ABCD\) bằng: \({{S}_{ABCD}}={{\left( 2a \right)}^{2}}=4{{a}^{2}}.\)
Thể tích của khối chóp \(S.ABCD\) bằng: \({{V}_{S.ABCD}}=\frac{1}{3}.SO.{{S}_{ABCD}}=\frac{1}{3}.a\sqrt{7}.4{{a}^{2}}=\frac{4\sqrt{7}{{a}^{3}}}{3}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+mx-1\) với \(m\) là tham số thực. Tìm tất cả các giá trị của tham số \(m\) để hàm số đạt cực trị tại hai điểm \({{x}_{1}};{{x}_{2}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}=6.\)
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.
.jpg.png)
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( \sqrt{4+2f\left( \cos x \right)} \right)=m\) có nghiệm \(x\in \left[ 0;\frac{\pi }{2} \right).\)
Tìm hoành độ các giao điểm của đường thẳng \(y=2x-\frac{13}{4}\) với đồ thị hàm số \(y=\frac{{{x}^{2}}-1}{x+2}.\)
Tìm giá trị của \(m\) để hàm số \(y={{x}^{3}}-{{x}^{2}}+mx-1\) có hai điểm cực trị.
Phương trình \(\log _{2}^{2}x={{\log }_{2}}\frac{{{x}^{4}}}{2}\) có nghiệm là \(a,b.\) Khi đó \(a.b\) bằng
Thể tích của khối chóp có diện tích đáy bằng 10 và độ dài chiều cao bằng 3 là
Có bao nhiêu giá trị nguyên dương của \(m\) để hàm số \(y=\frac{x-8}{x-m}\) đồng biến trên từng khoảng xác định của nó?
Cho hình chóp tam giác \(S.ABC,\) gọi \(M,N\) lần lượt là trung điểm của \(SB\) và \(SC. \) Tỉ số thể tích của khối chóp \(S.AMN\) và \(S.ABC\) là
Tổng các nghiệm của phương trình \(\log _{2}^{2}\left( 3x \right)+{{\log }_{3}}\left( 9x \right)-7=0\) bằng
Khoảng nghịch biến của hàm số \(y={{x}^{3}}-3x+3\) là \(\left( a;b \right)\) thì \(P={{a}^{2}}-2ab\) bằng
Phương trình \({{2}^{{{x}^{2}}+x-3}}=8\) có hai nghiệm là \(a,b.\) Khi đó \(a+b\) bằng
Cho đồ thị hai hàm số \(y={{a}^{x}}\) và \(y={{\log }_{b}}x\) như hình vẽ. Khẳng định nào sau đây đúng?
.jpg.png)
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(y=f\left( x \right)\) đồng biến trên khoảng nào dưới đây ?
.jpg.png)
Hàm số \(f\left( x \right)={{\log }_{3}}\left( 2x+1 \right)\) có đạo hàm là


