Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B với AB=BC=a, AD=2a. Biết \(SA\bot \left( ABCD \right)\) và SA=a. Tính khoảng cách giữa AD và SB.
A. \(\frac{{a\sqrt 2 }}{4}\)
B. \(\frac{a}{2}\)
C. \(\frac{{a\sqrt 3 }}{3}\)
D. \(\frac{{a\sqrt 2 }}{2}\)
Lời giải của giáo viên
ToanVN.com
.png)
Trong \(\left( SAB \right)\) dựng \(AH\bot SB\) tại H.
Vì \(\left\{ \begin{align} & AD\bot SA \\ & AD\bot AB \\ \end{align} \right.\) \(\Rightarrow AD\bot \left( SAB \right) \Rightarrow AD\bot AH\).
Khi đó \(d\left( AD,SB \right)=AH\).
Xét tam giác SAB vuông tại A có \(AH=\frac{SA.AB}{\sqrt{S{{A}^{2}}+A{{B}^{2}}}}=\frac{a\sqrt{2}}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{1}{\left[ f\left( x \right)+3{{x}^{2}} \right]\text{d}x}=6\). Khi đó \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm \({f}'\left( x \right)\) như sau:
.png)
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+3}{x-1}\) trên đoạn \(\left[ 2;3 \right]\) lần lượt là M và m. Tổng M+m bằng
Nghiệm của phương trình \({{\log }_{3}}\left( 1-3x \right)=2\) là
Với a là số thực dương tùy ý, \(\ln \left( {ea} \right)\) bằng
Cho \(y=f\left( x \right)\) có đồ thị của \(y={f}'\left( x \right)\) như hình vẽ dưới đây.
Đặt \(M=\underset{\left[ \text{-2;6} \right]}{\mathop{\text{max}}}\,\text{ }f\left( x \right), m=\underset{\left[ \text{-2;6} \right]}{\mathop{\text{min}}}\,\text{ }f\left( x \right)\). Giá trị của biểu thức M+m bằng
Tiệm cận đứng của đồ thị hàm số \(y=\frac{-2x+4}{-x+1}\) là đường thẳng:
Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng \(d:\frac{x-2}{-1}=\frac{y-1}{2}=\frac{z}{1}\) là
Cho số phức z=2+3i. Tìm môđun của số phức \(w=\left( 1+i \right)z-\bar{z}\)
Cho hàm số \(f\left( x \right)=-3{{x}^{2}}+1.\) Trong các khẳng định sau, khẳng định nào đúng?
Cho khối chóp S.ABCD có đáy là hình vuông cạnh đáy bằng a và SA vuông góc với đáy với \(SA=a\sqrt{3}.\) Thể tích của khối chóp S.ABCD bằng
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tìm tọa độ tâm I của mặt cầu \(\left( S \right)\).
Với a là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;1 \right), B\left( 0;3;-1 \right)\). Mặt cầu \(\left( S \right)\) đường kính AB có phương trình là


