Cho hình chóp S.ABC có tam giác ABC vuông tại B, \(\widehat{C}\)= 600, AC = 2, SA \(\bot \) (ABC), SA = 1. Gọi M là trung điểm của AB. Khoảng cách d giữa SM và BC là
A. \(d = \frac{{\sqrt {21} }}{7}\)
B. \(d = \frac{{2\sqrt {21} }}{7}\)
C. \(d = \frac{{\sqrt {21} }}{3}\)
D. \(d = \frac{{2\sqrt {21} }}{3}\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi N là trung điểm AC, H là hình chiếu của A trên SM. Khi đó AH ⊥ (SMN). Lại có BC ∥ (SMN)
nên d(SM, BC) = d(B,(SMN)) = d(A,(SMN)) = AH.
Ta có AB = AC sin C = \(\sqrt{3},AH=\frac{SA.AM}{\sqrt{S{{A}^{2}}+A{{M}^{2}}}}=\frac{\sqrt{21}}{7}\)
Vậy d(SM, BC) =\(\frac{\sqrt{21}}{7}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho mặt cầu S tâm O, bán kính bằng 2. (P) là mặt phẳng cách O một khoảng bằng 1 và cắt (S) theo một đường tròn (C). Hình nón (N) có đáy là (C), đỉnh thuộc (S), đỉnh cách (P) một khoảng lớn hơn 2. Kí hiệu V1,V2 lần lượt là thể tích của khối cầu S và khối nón (N). Tỉ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\) là
Cho hai số phức \({{z}_{1}}=3+2i\) và \({{z}_{2}}=-2+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng
Xét các số thực dương x, y thỏa mãn \({\log _{\sqrt 3 }}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 3} \right) + y\left( {y - 3} \right) + xy.\) Tìm giá trị Pmax của biểu thức \(P = \frac{{3x + 2y + 1}}{{x + y + 6}}\).
Diện tích của hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} + 2x\) và \(y = 3{x^2}\) được tính theo công thức nào dưới đây?
Trong không gian Oxyz, cho A(1;-2;3) và mp(Q): x - 3y + z - 1 = 0. Mặt phẳng (P) đi qua A và song song với mp(Q) có phương trình là:
Cho hàm số \(y = \left( {{x^2} + 2} \right)\left( {{x^2} - 1} \right)\) có đồ thị (C). Mệnh đề nào dưới đây đúng?
Giá trị lớn nhất của hàm số \(y = f(x) = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) trên đoạn \(\left[ { - \frac{1}{2};2} \right]\) bằng
Trong không gian \(\left( Oxyz \right)\), cho đường thẳng \(d:\ \frac{x-1}{2}=\frac{y-2}{3}=\frac{z+1}{-1}.\) Vectơ nào dưới đây là một vectơ chỉ phương của d.
Số phức z thỏa mãn \(z + 3(z + \overline z ) = 2 - 5i\) có phần thực bằng:
Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị \(\left( C \right)\)
Tìm nguyên hàm \(I = \int\limits_{}^{} {2x.{e^{{x^2}}}dx} \)
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x+y+z+2=0\). Điểm nào dưới đây thuộc mặt phẳng (P)
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 2}}\) là


