Câu hỏi Đáp án 3 năm trước 67

Cho hình chóp S.ABC có \(SA = SB = SC = a,\,\,\widehat {ASB} = \widehat {ASC} = {90^0};\,\,\widehat {BSC} = {60^0}\). Tính diện tích mặt cầu ngoại tiếp chóp. 

A. \(\dfrac{{7\pi {a^2}}}{6}\)     

B. \(\dfrac{{7\pi {a^2}}}{3}\) 

Đáp án chính xác ✅

C. \(\dfrac{{7\pi {a^2}}}{{18}}\)    

D. \(\dfrac{{7\pi {a^2}}}{{12}}\)  

Lời giải của giáo viên

verified ToanVN.com

Ta có \(\left\{ \begin{array}{l}SA \bot SB\\SA \bot SC\end{array} \right. \Rightarrow SA \bot \left( {SBC} \right)\). Khi đó ta có chóp SABC có cạnh SA vuông góc với mặt (SBC).

Gọi Rđáy là bán kính đường tròn ngoại tiếp tam giác SBC.

Xét tam giác SBC có \(\left\{ \begin{array}{l}SB = SC = a\\\widehat {BSC} = {60^0}\end{array} \right. \Rightarrow \Delta SBC\) đều \( \Rightarrow {R_{day}} = \dfrac{{{a^3}}}{{4S}} = \dfrac{{{a^3}}}{{4.\dfrac{{{a^2}\sqrt 3 }}{4}}} = \dfrac{a}{{\sqrt 3 }}\).

Áp dụng công thức tính nhanh \({R_{cau}} = \sqrt {\dfrac{{S{A^2}}}{4} + R_{day}^2}  = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt {21} }}{6}\).

Vậy diện tích mặt cầu ngoại tiếp chóp S.ABC là \(S = 4\pi {R^2} = 4\pi .\dfrac{{7{a^2}}}{{12}} = \dfrac{{7\pi {a^2}}}{3}\).

Chọn B.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(y = \dfrac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {2; + \infty } \right)?\)

Xem lời giải » 3 năm trước 82
Câu 2: Trắc nghiệm

Cho hai phương trình \({x^2} + 7x + 3 - \ln \left( {x + 4} \right) = 0\,\,\,\left( 1 \right)\) và \({x^2} - 11x + 21 - \ln \left( {6 - x} \right) = 0\,\,\left( 2 \right)\). Đặt T là tổng các nghiệm phân biệt của hai phương trình đã cho, ta có

Xem lời giải » 3 năm trước 79
Câu 3: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{4x}} - 2}}{{x - 2}}\;\;khi\;\;x \ne 2\\ax + 3\;\;khi\;\;x = 2\end{array} \right..\) Xác định \(a\) để hàm số liên tục trên \(R.\) 

Xem lời giải » 3 năm trước 78
Câu 4: Trắc nghiệm

Cho a là số thực dương, \(a \ne 1\). Biết bất phương trình \({\log _a}x \le 3x - 3\) nghiệm đúng với mọi \(x > 0\). Số a thuộc tập hợp nào sau đây ?

Xem lời giải » 3 năm trước 77
Câu 5: Trắc nghiệm

Cho hình nón có đường cao bằng bán kính đáy và bằng 15. Diện tích xung quanh của mặt nón đã cho là:

Xem lời giải » 3 năm trước 75
Câu 6: Trắc nghiệm

Trong mặt phẳng \(Oxy\) cho tam giác \(ABC\) có đỉnh \(A\left( {5;\;5} \right),\) trực tâm \(H\left( { - 1;\;13} \right),\) đường tròn ngoại tiếp tam giác \(ABC\) có phương trình \({x^2} + {y^2} = 50.\) Biết tọa độ đỉnh \(C\) là \(C\left( {a;\;b} \right)\) với \(a < 0.\) Tổng \(a + b\) bằng:

Xem lời giải » 3 năm trước 75
Câu 7: Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho điểm \(I\left( {1;2} \right)\) và đường thẳng \(\left( d \right):\,\,2x + y - 5 = 0\). Biết rằng có hai điểm \({M_1},{M_2}\) thuộc \(\left( d \right)\) sao cho \(I{M_1} = I{M_2} = \sqrt {10} \). Tổng các hoành độ của \({M_1}\) và \({M_2}\) là:

Xem lời giải » 3 năm trước 74
Câu 8: Trắc nghiệm

Tìm các giá trị của tham số m \(\left( {m \in R} \right)\) để phương trình \({x^2} + \dfrac{1}{{{x^2}}} - \left( {{m^2} + m + 2} \right)\left( {x + \dfrac{1}{x}} \right) + {m^3} + 2m + 2 = 0\) có nghiệm thực:

Xem lời giải » 3 năm trước 74
Câu 9: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của m trên miền \(\left[ { - 10;10} \right]\) để hàm số \(y = {x^4} - 2\left( {2m + 1} \right){x^2} + 7\) có ba điểm cực trị?

Xem lời giải » 3 năm trước 73
Câu 10: Trắc nghiệm

Biết rằng tập nghiệm của bất phương trình \(\sqrt {2x + 4}  - 2\sqrt {2 - x}  \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\) là \(\left[ {a;b} \right]\). Khi đó giá trị của biểu thức \(P = 3a - 2b\) bằng:

Xem lời giải » 3 năm trước 73
Câu 11: Trắc nghiệm

Cho hàm số \(y = \dfrac{{x - 2019}}{{x + 1}}\) và các mệnh đề sau :(1)   Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 1\) và tiệm cân ngang là đường thẳng \(y = 1\).(2)   Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2019\) và tiệm cận ngang là đường thẳng \(y = 1\).(3)   Hàm số đồng biến trên mỗi khoảng xác định của nó.(4)   Hàm số nghịch biến trên mỗi khoảng xác định của nó.Số mệnh đề đúng trong các mệnh đề trên là:

Xem lời giải » 3 năm trước 72
Câu 12: Trắc nghiệm

Tổng tất cả các giá trị thực của tham số m để hàm số \(y = 3{x^3} + 2\left( {m + 1} \right){x^2} - 3mx + m - 5\) có hai điểm cực trị \({x_1},\;{x_2}\) đồng thời \(y\left( {{x_1}} \right).y\left( {{x_2}} \right) = 0\) là:

Xem lời giải » 3 năm trước 72
Câu 13: Trắc nghiệm

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( {\dfrac{1}{2}} \right)^n} + 1,\,\,\,\forall n \in {N^*}\). Tính \({S_{2019}} = {u_1} + {u_2} + {u_3} + ... + {u_{2019}}\), ta được kết quả  

Xem lời giải » 3 năm trước 72
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(4f\left( x \right) - 5 = 0\) là:

Xem lời giải » 3 năm trước 71
Câu 15: Trắc nghiệm

Cho khối hai mươi mặt đều \(\left( H \right).\) Biết mỗi mặt của nó là một đa giác đều \(p\) cạnh, mỗi đỉnh của nó là đỉnh chung của đúng \(q\) mặt. Ta có \(\left( {p;\;q} \right)\) nhận giá trị nào sau đây?

Xem lời giải » 3 năm trước 71

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »