Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SB vuông góc với mặt phẳng đáy. Biết \(SB = 3a,\,AB = 4a,\,BC = 2a\). Khoảng cách từ B đến mặt phẳng (SAC) bằng:
A. \(\frac{{12\sqrt {61} a}}{{61}}\)
B. \(\frac{{3\sqrt {14} a}}{{14}}\)
C. \(\frac{{4a}}{5}\)
D. \(\frac{{12\sqrt {29} a}}{{29}}\)
Lời giải của giáo viên
ToanVN.com
Kẻ \(BK \bot AC,BH \bot SK\)
\(\begin{array}{l}
d\left( {B,\left( {SAC} \right)} \right) = BH\\
\frac{1}{{B{K^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{B{C^2}}} = \frac{1}{{16{a^2}}} + \frac{1}{{4{a^2}}} = \frac{5}{{16{a^2}}}\\
\frac{1}{{B{H^2}}} = \frac{1}{{B{K^2}}} + \frac{1}{{S{B^2}}} = \frac{5}{{16{a^2}}} + \frac{1}{{9{a^2}}} = \frac{{61}}{{144{a^2}}} \Rightarrow BH = \frac{{12a}}{{\sqrt {61} }}
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong bốn giới hạn sau đây, giới hạn nào bằng \( - \infty \)?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA \bot {\rm{(}}ABCD{\rm{)}}\). Gọi M là hình chiếu của A trên SB. Khẳng định nào sau đây đúng?
Cho tập hợp A gồm 12 phần tử. Số tập con gồm 4 phần tử của tập hợp A là:
Phương trình các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{1 - 3x}}{{x + 2}}\) lần lượt là:
Hàm số \(y = \frac{{x - 2}}{{x - 1}}\) có đồ thị là hình nào sau đây?
Câu 1.Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân với \(AB = AC = a,\widehat {BAC} = {\rm{120^\circ }}\), mặt phẳng (A'BC) tạo với đáy một góc \(60^0\). Tính thể tích của khối lăng trụ đã cho bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, tam giác SAD vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết AB=a, SA=2SD, mặt phẳng (SBC) tạo với mặt phẳng đáy một góc \(60^0\). Thể tích của khối chóp S.ABCD bằng:
Giá trị nhỏ nhất của hàm số \(y = 2{\sin ^4}x + {\cos ^2}x + 3\) bằng:
Số nghiệm của phương trình \(co{s^2}x + \cos x - 2 = 0\) trong đoạn \(\left[ {0;2\pi } \right]\) là:
Số hạng không chứa x trong khai triển \({\left( {x - \frac{1}{{{x^2}}}} \right)^{45}}\) là:
Với giá trị nào của tham số m thì phương trình \(3\sin x + m\cos x = 5\) vô nghiệm?
Với giá trị nào của tham số \(m\) thì hàm số \(y = {x^3} - 6{x^2} + mx + 1\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a\), SA vuông góc với đáy và \(SA = a\sqrt 3 \). Góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng:
Hàm số \(y = \sqrt {4 - {x^2}} \) đạt giá trị nhỏ nhất tại:
.png)


