Lời giải của giáo viên
ToanVN.com
.png)
Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I là trung điểm SC, suy ra
IM // SA nên \(IM \bot \left( {ABC} \right)\).
Do đó IM là trục của tam giác ABC, suy ra
IA = IB = IC (1)
Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS = IC = IA.
Từ (1) và (2), ta có IS = IA = IB = IC hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.
Vậy bán kính \(R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = \frac{{{x^3}}}{3} - {x^2} + x\) đồng biến trên khoảng nào sau đây?
Cho ba điểm \(A,\text{ }B,\text{ }M\) lần lượt là điểm biểu diễn của các số phức \(-4,\,\text{ }4i,\,\text{ }x+3i\). Với giá trị thực nào của x thì \(A,\text{ }B,\text{ }M\) thẳng hàng?
Cho hai số phức \({z_1} = 1 + 2i;{z_2} = 2 - 3i\). Tổng của hai số phức là
Đồ thị hàm số \(y = {x^3} - 3{x^2} + 2x - 1\) cắt đồ thị hàm số \(y = {x^2} - 3x + 1\) tại hai điểm phân biệt A, B. Khi đó độ dài AB là bao nhiêu ?
Phương trình chính tắc của đường thẳng đi qua điểm \(M\left( 1;-1;2 \right)\) và vuông góc với \(mp\left( \beta \right):2\text{x}+y+3\text{z}-19=0\) là
Môđun của số phức \(z = \frac{{\left( {1 + i} \right)\left( {2 - i} \right)}}{{1 + 2i}}\) là
Biết \(\bar z = {\left( {\sqrt 2 + i} \right)^2}.\left( {1 - \sqrt 2 i} \right)\). Phần ảo của số phức z là
Cần phân công ba bạn từ một tổ có 10 bạn để làm trực nhật. Hỏi có bao nhiêu cách phân công khác nhau?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - 3y + 4z = 2016\). Véctơ nào sau đây là một véctơ pháp tuyến của mặt phẳng (P) ?
Tìm giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} - 5}}{{x + 3}}\) trên đoạn [0;2].
Tìm nguyên hàm của hàm số \(f\left( x \right) = \ln 4x\).
Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 2}}\) là
Tính giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( { - 3{x^3} + x + 1} \right)\)
.jpg.png)


