Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp S.ABC.
A. \(V = \dfrac{{{a^3}}}{2}\)
B. \(V = {a^3}\)
C. \(V = \dfrac{{3{a^3}}}{2}\)
D. \(V = \dfrac{{{a^3}}}{2}\)
Lời giải của giáo viên
ToanVN.com
Tam giác SAB nằm trong mặt phẳng vuông góc với đáy.
Gọi H là trung điểm của AB
\( \Rightarrow SH \bot AB\) hay \(SH \bot \left( {ABC} \right)\)
Ta có: \(SA = SB = AB = 2a\)
\(\Rightarrow SH = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \)
+ \({S_{ABC}} = \dfrac{1}{2}a\sqrt 3 .2a = {a^2}\sqrt 3 \)
Khi đó \({V_{S.ABC}} = \dfrac{1}{3}.a\sqrt 3 .{a^2}\sqrt 3 = {a^3}\)
Chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho các số thực a < b < 0. Mệnh đề nào sau đây sai ?
Cho hàm số y = f(x) có đồ thị như hình vẽ sau:
Tìm số nghiệm thực phân biệt của phương trình f(x) = 1.
Môdun của số phức z khi biết \(\overline z = 3 - 4i\) là:
Hai điểm biểu diễn hai số phức liên hợp sau \(z = 1 + 2i\,,\,\,\overline z = 1 - 2i\) đối xứng nhau qua:
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Cạnh bên SC vuông góc với mặt phẳng đáy và SC = a. Thể tích V của khối chóp S.ABC là:
Ba đoạn thẳng SA, SB, SC đôi một vuông góc với nhau tạo thành một tứ diện SABC với: SA=a, SB=b, SC=c. Bán kính mặt cầu ngoại tiếp tứ diện đó là:
Trong không gian \(Oxyz\), cho điểm \(M\) nằm trên trục \(Ox\) sao cho \(M\) không trùng với gốc tọa độ, khi đó tọa độ điểm \(M\)có dạng
Điểm M(2 ; - 2) là điểm cực tiểu của đồ thị hàm số nào ?
Tìm miền xác định của hàm số \(y = \log \left( {{{1 - 5x} \over {2 - x}}} \right)\).
Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:
Họ nguyên hàm của hàm số \(f(x) = x\left( {2 + 3{x^2}} \right)\) là:
Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z - 2i| = 4\) là:


