Câu hỏi Đáp án 3 năm trước 59

Cho hình chóp \(S.ABCD\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\); tứ giác \(ABCD\) là hình thang vuông với cạnh đáy \(AD,BC\); \(AD = 3BC = 3a,\,\,AB = a,SA = a\sqrt 3 \). Điểm \(I\) thỏa mãn \(\overrightarrow {AD}  = 3\overrightarrow {AI} \); \(M\) là trung điểm \(SD\), \(H\) là giao điểm của \(AM\) và \(SI\). Gọi \(E\), \(F\) lần lượt là hình chiếu của \(A\) lên \(SB\), \(SC.\) Tính thể tích \(V\) của khối nón có đáy là đường tròn ngoại tiếp tam giác \(EFH\) và đỉnh thuộc mặt phẳng\(\left( {ABCD} \right)\).

A. \(V = \dfrac{{\pi {a^3}}}{{2\sqrt 5 }}\).

B. \(V = \dfrac{{\pi {a^3}}}{{\sqrt 5 }}\). 

C. \(V = \dfrac{{\pi {a^3}}}{{10\sqrt 5 }}\). 

Đáp án chính xác ✅

D. \(V = \dfrac{{\pi {a^3}}}{{5\sqrt 5 }}\). 

Lời giải của giáo viên

verified ToanVN.com

Xét tam giác \(SAD\) vuông tại \(A\) có \(SA = a\sqrt 3 ,AD = 3a \Rightarrow \widehat {SDA} = {30^0}\) \( \Rightarrow \widehat {MAI} = {30^0}\).

Lại có tam giác \(SAI\) vuông tại \(A\) có \(SA = a\sqrt 3 ,AI = a \Rightarrow \widehat {SIA} = {60^0}\) nên tam giác \(AHI\) có \(\widehat H = {90^0}\) hay \(AH \bot SI\)

Mà \(AH \bot IC\) do \(IC//BA \bot \left( {SAD} \right)\) nên \(AH \bot \left( {SIC} \right)\) \( \Rightarrow AH \bot SC\).

Ngoài ra, \(AE \bot SB,AE \bot BC\left( {BC \bot \left( {SAB} \right)} \right) \Rightarrow AE \bot \left( {SBC} \right) \Rightarrow AE \bot SC\).

Mà \(AF \bot SC\) nên \(SC \bot \left( {AEFH} \right)\) và \(AEFH\) là tứ giác có \(\widehat E = \widehat H = {90^0}\) nên nội tiếp đường tròn tâm \(K\) là trung điểm \(AF\) đường kính \(AF\).

Gọi \(O\) là trung điểm \(AC\) thì \(OK//SC\), mà \(SC \bot \left( {AEFH} \right)\) nên \(OK \bot \left( {AEFH} \right)\) hay \(O\) chính là đỉnh hình nón và đường tròn đáy là đường tròn đường kính \(AF\).

Ta tính \(AF,OK\).

Xét tam giác \(SAC\) vuông tại \(A\) đường cao \(AF\) nên

\(AF = \dfrac{{SA.AC}}{{SC}} = \dfrac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \dfrac{{a\sqrt 6 }}{{\sqrt 5 }}\); \(OK = \dfrac{1}{2}CF = \dfrac{1}{2}.\dfrac{{C{A^2}}}{{CS}} = \dfrac{a}{{\sqrt 5 }}\).

Vậy thể tích \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi .\dfrac{a}{{\sqrt 5 }}.{\left( {\dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{{\sqrt 5 }}} \right)^2} = \dfrac{{\pi {a^3}}}{{10\sqrt 5 }}\).

Chọn C.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp đều \(S.ABC\) có đáy là tam giác đều cạnh \(a\) . Gọi \(M,{\rm N}\) lần lượt là trung điểm của \(SB,SC\) . Biết \(\left( {AM{\rm N}} \right) \bot \left( {SBC} \right)\) . Thể tích của khối chóp \(S.ABC\) bằng     

Xem lời giải » 3 năm trước 74
Câu 2: Trắc nghiệm

Cho hàm số \(y = \frac{{1 - x}}{{{x^2} - 2mx + 4}}\) . Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số có ba đường tiệm cận. 

Xem lời giải » 3 năm trước 72
Câu 3: Trắc nghiệm

Hình vẽ bên là đồ thị cảu hàm số \(y = f\left( x \right)\) Gọi \(S\) là tập hợp các giá trị nguyên không âm của tham số \(m\) để hàm số \(y = \left| {f\left( {x - 2019} \right) + m - 2} \right|\) có 5 điểm cực trị. Số các phần tử của \(S\) bằng

Xem lời giải » 3 năm trước 71
Câu 4: Trắc nghiệm

Công thức tính diện tích xung quanh \({S_{xq}}\) của hình nón có đường sinh \(l\) , bán kính đáy \(r\) là 

Xem lời giải » 3 năm trước 70
Câu 5: Trắc nghiệm

Một hình trụ có bán kính đáy bằng \(2cm\) và có thiết diện qua trục là một hình vuông. Diện tích xung quanh của hình trụ là 

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Xác định số thực \(x\) để dãy số \(\log 2;\,\log 7;\,\log x\) theo thứ tự đó lập thành một cấp số cộng. 

Xem lời giải » 3 năm trước 69
Câu 7: Trắc nghiệm

Cho tam giác đều \(ABC\) có cạnh bằng \(3a\) . Điểm \(H\) thuộc cạnh \(AC\) với \(HC = a.\) Dựng đoạn thẳng \(SH\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) với \(SH = 2a.\) Khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {1;1;3} \right),B\left( { - 1;2;3} \right).\) Tọa độ trung điểm của đoạn thẳng \(AB\) là 

Xem lời giải » 3 năm trước 68
Câu 9: Trắc nghiệm

Cho hai số thực \(x,\,y\) thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10}  = \sqrt {6 + 4x - {x^2}} \). Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}}  - a} \right|\). Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ { - 10;\,10} \right]\) của tham số \(a\) để \(M \ge 2m\)? 

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A\) , cạnh \(AB = 6,AC = 8\) và \(M\) là trung điểm của cạnh  Khi đó thể tích của khối tròn xoay do tam giác  quanh cạnh  là

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) trên \(\mathbb{R}\) . Hình vẽ bên là đồ thị của hàm số \(y = f'\left( x \right)\) . Hàm số \(g\left( x \right) = f\left( {x - {x^2}} \right)\) nghịch biến trên khoảng nào trong các khoảng dưới đây ?     

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Tập hợp tất cả các số thực \(x\) không thỏa mãn bất phương trình  \({9^{{x^2} - 4}} + \left( {{x^2} - 4} \right){.2019^{x - 2}} \ge 1\) là khoảng \(\left( {a;b} \right)\) . Tính \(b - a\)   

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập các giá trị của \(m\) sao cho đồ thị \(\left( C \right)\) có đúng một tiếp tuyến song song với trục \(Ox.\) Tổng tất cả các phần tử của \(S\) là 

Xem lời giải » 3 năm trước 65
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) và có bảng biến thiên trên \({\rm{[}} - 5;7)\) như sau:

Mệnh đề nào sau đây đúng?   

Xem lời giải » 3 năm trước 64
Câu 15: Trắc nghiệm

Cho hàm số \(y = \dfrac{{mx - 4}}{{x + 1}}\) (với m là tham số thực) có bảng biến thiên dưới đâyMệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 64

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »