Cho hình chóp \(S.ABCD\) có đáy là hình vuông và có mặt phẳng \((SAB)\) vuông góc với mặt phẳng đáy, tam giác \(SAB\) là tam giác đều. Gọi I và E lần lượt là trung điểm của cạnh AB và BC; H là hình chiếu vuông góc của I lên cạnh SC. Khẳng định nào sau đây sai?
A. Mặt phẳng (SIC) vuông góc với mặt phẳng (SDE).
B. Mặt phẳng (SAI) vuông góc với mặt phẳng (SBC).
C. Góc giữa hai mặt phẳng (SAB) và (SIC) là góc BIC.
D. Góc giữa hai mặt phẳng (SIC) và (SBC) là góc giữa hai đường thẳng IH và BH.
Lời giải của giáo viên
ToanVN.com
.png)
+ \(\left\{ \begin{array}{l} DE \bot IC\\ DE \bot SI \end{array} \right. \Rightarrow DE \bot \left( {SIC} \right) \Rightarrow \left( {SIC} \right) \bot \left( {SDE} \right).\) Suy ra A đúng
+ \(\left\{ \begin{array}{l} BC \bot AI\\ BC \bot AB \end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAI} \right).\) Suy ra B đúng
+ \(DE\bot \left( SCI \right);BC\bot \left( SAI \right)\) nên \(\left( \left( SIC \right),\left( SAB \right) \right)=\left( BC,DE \right)=\angle DEC=\angle BIC.\)
Suy ra D sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=\frac{5x+9}{x-1}\) khẳng định nào sau đây là đúng?
Một lớp có 30 học sinh, trong đó có 3 cán sự lớp. Hỏi có bao nhiêu cách cứ 4 bạn đi dự đại hội đoàn trường sao cho trong 4 học sinh đó có ít nhất một cán sự lớp
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng
.jpg.png)
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=4n-3.\) Tìm công sai \(d\) của cấp số cộng.
Đồ thị hàm số \(y=\frac{\sqrt{3{{x}^{2}}+2}}{\sqrt{2x+1}-x}\) có tất cả bao nhiêu tiệm cận?
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông và \(AB=BC=a,AA'=a\sqrt{2},M\) là trung điểm \(BC. \) Tính khoảng cách \(d\) của hai đường thẳng \(AM\) và \(B'C. \)
Đặt \(a={{\log }_{3}}4,\) khi đó \({{\log }_{16}}81\) bằng
Cho hàm số \(f\left( x \right),\) hàm số \(y=f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên
.jpg.png)
Bất phương trình \(f\left( x \right)<2x+m\) (\(m\) là tham số thực) có nghiệm đúng với mọi \(x\in \left( 0;2 \right)\) khi và chỉ khi
Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A. \) Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( ABC \right)\) trùng với trọng tâm tam giác \(\left( ABC \right).\) Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng \(\frac{\sqrt{17}}{6}a,\) cạnh bên \(AA'\) bằng \(2a.\) Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) biết \(AB<a\sqrt{3}.\)
Cho hàm số \(y=\frac{ax+b}{cx+d}\) có đồ thị như hình vẽ
.jpg.png)
Khẳng định nào sau đây đúng?
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác với \(AB=a,AC=2a\) và \(\widehat{BAC}={{120}^{0}},AA'=2a\sqrt{5}.\) Thể tích \(V\) của khối lăng trụ đã cho là
Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {{\sin }^{2}}x \right)=m\) có nghiệm
.jpg.png)
Thiết diện qua trục của một hình nón là tam giác đều cạnh \(2a.\) Đường cao của hình nón là
Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB=6a,AC=8a,AD=12a,\) với \(a>0,a\in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD. \) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( AEF \right)\) theo \(a.\)
Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}.\) Biết rằng hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ
.jpg.png)
Số điểm cực trị của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-2x \right)-\left( \frac{{{x}^{4}}}{2}-2{{x}^{3}}+{{x}^{2}}+2x+1 \right)\) là


