Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B,AB = BC = a;{\rm{ }}AD = 2a.\) Tam giác \(SAD\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác \(S.ABC.\)
A. \(3\pi {a^2}\)
B. \(5\pi {a^2}\)
C. \(6\pi {a^2}\)
D. \(10\pi {a^2}\)
Lời giải của giáo viên
ToanVN.com
Gọi \(E\) là trung điểm của \(AD\) suy ra \(AE = \dfrac{{AD}}{2} = a = AB = BC\)
Mà \(BC//AD\) và \(BC \bot AD\) nên \(EABC\) là hình vuông cạnh \(a.\)
Lại có \(\left\{ \begin{array}{l}\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\end{array} \right.\) mà \(SE \bot AD\) (do tam giác \(SAD\) đều có \(SE\) là trung tuyến)
Suy ra \(SE \bot \left( {ABCD} \right) \Rightarrow SE \bot \left( {EABC} \right)\)
Nhận thấy \(EABC\) là hình vuông nên đường tròn ngoại tiếp \(EABC\) cũng là đường tròn ngoại tiếp tam giác \(ABC\)
Hay mặt cầu ngoại tiếp hình chóp \(S.ABC\) cũng là mặt cầu ngoại tiếp hình chóp \(S.EABC\).
Mà hình chóp \(S.EABC\) có cạnh bên \(SE \bot \left( {EABC} \right)\) và đáy \(EABC\) là hình vuông cạnh \(a.\) Gọi \(I\) là tâm hình vuông \(EABC\)
Suy ra bán kính mặt cầu ngoại tiếp chóp \(S.EABC\) là \(R = \sqrt {I{E^2} + \dfrac{{S{E^2}}}{4}} \)
Ta có \(BE = \sqrt {A{E^2} + A{B^2}} = a\sqrt 2 \Rightarrow IE = \dfrac{{a\sqrt 2 }}{2}\)
Tam giác \(SAD\) đều cạnh \(2a\) có \(SE\) là trung tuyến nên \(SE = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \)
Suy ra \(R = \sqrt {I{E^2} + \dfrac{{S{E^2}}}{4}} = \sqrt {\dfrac{{2{a^2}}}{4} + \dfrac{{3{a^2}}}{4}} = \dfrac{{a\sqrt 5 }}{2}\)
Diện tích mặt cầu là \(S = 4\pi {R^2} = 4\pi .\dfrac{{5{a^2}}}{4} = 5\pi {a^2}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx - \dfrac{3}{{2x}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và \(SA\) vuông góc với đáy \(ABCD\). Tính \(\sin \alpha \) với \(\alpha \) là góc tạo bởi đường thẳng \(BD\) và mặt phẳng \(\left( {SBC} \right)\).
Cho tam giác \(ABC\) có \(A\left( {1; - 2;0} \right);B\left( {2;1; - 2} \right);C\left( {0;3;4} \right)\). Tìm tọa độ điểm D để tứ giác \(ABCD\) là hình bình hành.
Cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tính bán kính \(R\) của mặt cầu \(\left( S \right)\).
Tập xác định của hàm số \(y = {x^4} - 2018{x^2} - 2019\) là
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\), góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích của khối chóp \(S.ABCD\) theo \(a\).
Cho điểm \(M\left( {1;2;5} \right)\), mặt phẳng \(\left( P \right)\) đi qua điểm \(M\) cắt trục tọa độ \(Ox;Oy;Oz\) tại \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Phương trình mặt phẳng \(\left( P \right)\) là
Cho ba điểm \(A\left( {2;1; - 1} \right);B\left( { - 1;0;4} \right);C\left( {0; - 2; - 1} \right)\) . Phương trình mặt phẳng đi qua A và vuông góc với BC là
Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) , đường thẳng \((d):y = m(x + {\rm{ }}1)\) với \(m\) là tham số, đường thẳng \(\left( \Delta \right):y = 2x - 7.\) Tìm tổng tất cả các giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt \(A( - 1;0);{\rm{ }}B;{\rm{ }}C\) sao cho \(B,C\) cùng phía với \(\Delta \) và \(d(B;\Delta ){\rm{ }} + d(C;\Delta ){\rm{ }} = {\rm{ }}6\sqrt 5 .\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SAB\) là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right).\) Tính \(\cos \varphi \) với \(\varphi \) là góc tạo bởi \((SAC)\) và \((SCD).\)
Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn \(\left[ { - 2;3} \right]\) bằng
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 3\,\,khi\,\,x \ge 1\\5 - x\,\,\,\,khi\,\,\,x < 1\end{array} \right.\). Tính\(I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx} + 3\int\limits_0^1 {f\left( {3 - 2x} \right)dx} \).
Một hình trụ có bán kính đáy bằng chiều cao và bằng \(a.\) Một hình vuông \(ABCD\) có \(AB;{\rm{ }}CD\) là 2 dây cung của 2 đường tròn đáy và mặt phẳng \((ABCD)\) không vuông góc với đáy. Diện tích hình vuông đó bằng
Cho hàm số \(y = f\left( x \right) = \,a\,{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?


