Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AD\,{\rm{//}}\,BC\) và \(AD = 2BC\). Kết luận nào sau đây đúng?
A. \({V_{S.ABCD}} = 4{V_{S.ABC}}\)
B. \({V_{S.ABCD}} = 6{V_{S.ABC}}\)
C. \({V_{S.ABCD}} = 3{V_{S.ABC}}\)
D. \({V_{S.ABCD}} = 2{V_{S.ABC}}\)
Lời giải của giáo viên
ToanVN.com
.png)
Ta có \({S_{\Delta ABC}} = \frac{1}{3}{S_{ABCD}} \Rightarrow {V_{S.ABC}} = \frac{1}{3}{V_{S.ABCD}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng nhau. Gọi \(E, M\) lần lượt là trung điểm của các cạnh \(BC\) và \(SA\), \(\alpha \) là góc tạo bởi đường thẳng \(EM\) và mặt phẳng \((SBD)\). Giá trị của \(\tan \alpha \) bằng
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Hình chiếu của \(S\) lên mặt phẳng đáy trùng với trọng tâm của tam giác \(ABD\). Cạnh \(SD\) tạo với đáy một góc \(60^0\). Tính thể tích của khối chóp \(S.ABCD\).
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng 1. Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {A'BD} \right)\) bằng
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(K\) là trung điểm của \(DD'\). Khoảng cách giữa hai đường thẳng \(CK\) và \(A'D\) bằng
Một hình hộp chữ nhật \(ABCD.A'B'C'D'\) có ba kích thước là \(2 cm, 3 cm\) và \(6 cm\). Thể tích của khối tứ diện \(ACB'D'\) bằng
Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?
Cho khối chóp \(S.ABCD\) có thể tích \(V\). Các điểm \(A', B', C'\) tương ứng là trung điểm các cạnh \(SA, SB, SC\). Thể tích khối chóp \(S.A'B'C'\) bằng
Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là \(a\sqrt 3 \). Tính thể tích \(V\) của khối chóp đó.
Cho khối chóp \(S.ABC\) có thể tích \(V\), nếu giữ nguyên chiều cao và tăng các cạnh đáy lên 3 lần thì thể tích khối chóp thu được là:
Cho lăng trụ tam giác \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) đều cạnh bằng \(a\). Hình chiếu vuông góc của \(A'\) trên mặt phẳng \((ABC)\) trùng với trung điểm \(H\) của cạnh \(AB\). Góc giữa cạnh bên của lăng trụ và mặt phẳng đáy bằng \(30^0\). Tính thể tích của khối lăng trụ đã cho theo \(a\).
Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết thể tích của khối chóp \(S.ABCD\) là \(\frac{{{a^3}\sqrt {15} }}{6}\). Góc giữa đường thẳng \(SC\) và mặt phẳng đáy \(ABCD\) là
Cho hình chóp tứ giác \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với mặt đáy, góc giữa \(SA\) và \((ANCD)\) bằng \(45^0\). Thể tích khối chóp \(S.ABCD\) là
Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\), cạnh bên bằng \(a\sqrt 2 \) (hình vẽ). Thể tích khối chóp là
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a\), góc giữa hai đường thẳng \(AB'\) và \(BC'\) bằng \(60^0\). Tính thể tích \(V\) của khối lăng trụ đó.


