Lời giải của giáo viên
ToanVN.com
Ta có \(y' = 4{x^3} - 4x = 0 \Leftrightarrow 4x\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 1\\
x = - 1
\end{array} \right.\)
Lại có \(y'' = 12{x^2} - 4 \Rightarrow y''\left( 0 \right) = - 4 < 0;y''\left( 1 \right) = y''\left( { - 1} \right) = 8 > 0\) nên x = 0 là điểm cực đại của hàm số và x = 1, x = - 1 là các điểm cực tiểu của hàm số.
Nhận thấy rằng đây là hàm trùng phương nên hai điểm cực tiểu sẽ đối xứng nhau qua Oy.
Từ đó để tiếp tuyến của đồ thị song song với trục Ox thì tiếp điểm là điểm cực trị của đồ thị hàm số.
Do đó để có đúng 1 tiếp tuyến song song với trục Ox thì điểm cực đại hoặc cực tiểu phải nằm trên trục Ox.
Hay
\(\left[ \begin{array}{l}
y\left( 0 \right) = 0\\
y\left( { \pm 1} \right) = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m - 2 = 0\\
m - 3 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m = 2\\
m = 3
\end{array} \right.\)
Vậy \(S = \left\{ {2;3} \right\} \Rightarrow \) tổng các phần tử của S là 2 + 3 = 5.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?
.png)
Cho hàm số \(f\left( x \right) = 2x + {e^x}.\) Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x)\) thỏa mãn \(F\left( 0 \right) = 2019\)
Cho hinh chóp S.ABC có SA vuông góc với đáy. Tam giác ABC vuông cân tại B , biết SA = AC = 2a. Thể tích khối chóp S.ABC là
Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là
Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x + 4}}\) là
Cho tứ diện SABC và G là trọng tâm của tứ diện, mặt phẳng quay quanh AG và cắt các cạnh SB, SC tương ứng tại M, N. Giá trị nhỏ nhất của tỉ số \(\frac{{{V_{S,AMN}}}}{{{V_{S.ABC}}}}\) là
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn [0;4] bằng - 1
Phương trình \({7^{2{x^2} + 6x + 4}} = 49\) có tổng tất cả các nghiệm bằng
Cho hai số thực x, y thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} .\) Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}} - a} \right|.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-10;10] của tham số a để \(M \ge 2m?\)
Cho tập A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?
Cho a > 0, b > 0, giá trị của biểu thức \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \frac{1}{4}\left( {\sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} } \right){}^2} \right]^{\frac{1}{2}}}\) bằng
Tập nghiệm của bất phương trình \({\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\) là \(\left( { - \sqrt a ; - \sqrt b } \right].\) Khi đó ab bằng
Cho hàm số \(y = \frac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}}.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-6;6] của tham số m để đồ thị hàm số có bốn đường tiệm cận?
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; \(AD = 3BC = 3a;AB = a,SA = a\sqrt 3 .\) Điểm I thỏa mãn \(\overrightarrow {AD} = 3\overrightarrow {AI} ;\) M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).
Cho phương trình \(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\,\,(1).\) Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó, \(a\) thuộc khoảng


