Cho hàm số \(y = \frac{1}{3}{x^3} - \left( {m + 2} \right){x^2} + \left( {{m^2} + 4m} \right)x + 5\) với m là tham số thực. Tập hợp các giá trị m để hàm số đồng biến trên khoảng (3;8) là
A. \(\left( { - \infty ; - 1} \right]\)
B. [3;4]
C. \(\left( { - \infty ; - 1} \right] \cup \left[ {8; + \infty } \right)\)
D. \(\left[ {8; + \infty } \right)\)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) có đạo hàm là hàm liên tục trên R thỏa mãn \(f\left( 0 \right) = 2,f\left( 1 \right) = 6.\) Khẳng định nào sau đây là đúng?
Cho hàm số \(y=\cos 2x\) có một nguyên hàm là \(F(x),F(0) = 0.\) Khẳng định nào sau đây là đúng?
Hàm số nào trong các hàm số sau đây có đồ thị như hình bên?
.png)
Cho hàm số \(y=f(x)\) đồng biến trên R. Giá trị nhỏ nhất của hàm số đã cho trên đoạn [0;3] bằng
Tập xác định của hàm số \(y = \sqrt {{{\log }_{\frac{e}{\pi }}}x} \) là
Gọi S là tập hợp tất cả các số tự nhiên m để hàm số \(y = \left( {m - 2019} \right)x + 2\sqrt 3 co{s^2}x + 2\sin x\cos x\) nghịch biến trên R. Số phần tử của S là
Cho hàm số \(y=f(x)\) có đạo hàm cấp 2 trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2xf'(x) + f\left( x \right) = 2x\forall x \in \left( {0; + \infty } \right),\) Giá trị của biểu thức \(f(4)\) là
Nghịch đảo \(\frac{1}{z}\) của số phức \(z = 5 - 12i\) bằng
Nếu các số dương \(a, b, c\) thỏa mãn \(\ln a + \ln b = 2\ln c\) thì
Với mỗi số nguyên dương n, gọi \(s_n\) là số cặp số nguyên (x;y) thỏa mãn \({x^2} + {y^2} \le {n^2}.\) (nếu \(a \ne b\) thì hai cặp số \((a;b)\) và \((b;a)\) khác nhau). Khẳng định nào sau đây là đúng?
Cho các số thực \(a, b (a < b)\). Nếu hàm số y = F(x) là một nguyên hàm của hàm số \(y=f(x)\) thì
Trong không gian tọa độ Oxyz, mặt cầu tâm I(- 2;9;- 1) tiếp xúc mặt phẳng (Oxz) có phương trình là
Cho hàm số \(y=f(x)\) có đạo hàm trên R và có đồ thị như hình bên.Khẳng định nào sau đây là đúng?
.png)
Một khối nón có bán kính đường tròn đáy và chiều cao cùng bằng a thì có thể tích bằng


