Cho hàm số \(y = \frac{{x - 1}}{{x + 2}}\) . Mệnh đề nào sau đây là mệnh đề đúng?
A. Hàm số đồng biến trên R
B. Hàm số nghịch biến trên từng khoảng xác định.
C. Hàm số đồng biến trên \(R\backslash {\rm{\{ }} - 2\} \)
D. Hàm số đồng biến trên từng khoảng của miền xác định.
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tứ diện ABCD có \(AB = 1;AC = 2;AD = 3\) và \(\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = {60^0}\). Tính thể tích V của khối tứ diện ABCD.
Cho hình lăng trụ đều ABC.A'B'C'. Biết khoảng cách từ điểm C đến mặt phẳng (ABC') bằng \(a\), góc giữa hai mặt phẳng (ABC') và (BCC'B') bằng \(\alpha \) với \(\cos \alpha = \frac{1}{{2\sqrt 3 }}\). Tính thể tích khối lăng trụ ABC.A'B'C'.
Trong không gian với hệ trục Oxyz, cho hai vectơ \(\overrightarrow u = (1;0; - 3)\) và \(\overrightarrow v = ( - 1; - 2;0)\) . Tính \(\cos (\overrightarrow u ,\overrightarrow v )\) .
Trong không gian Oxyz, cho hai điểm \(M(2;2;1)\), \(N\left( { - \frac{8}{3};\frac{4}{3};\frac{8}{3}} \right)\). Tìm tọa độ tâm đường tròn nội tiếp tam giác OMN .
Gọi \(M, m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = x + {\cos ^2}x\) trên \(\left[ {0;\frac{\pi }{4}} \right]\). Tính \(S = M + m\).
Cho hàm số \(y = {x^3} - 3{x^2} + 6x + 1\) có đồ thị (C). Tiếp tuyến của (C) có hệ số góc nhỏ nhất là bao nhiêu?
Trong không gian Oxyz, cho hai điểm \(B(0;3;1),C( - 3;6;4)\). Gọi M là điểm nằm trên đoạn BC sao cho \(MC = 2MB\). Tính tọa độ điểm M.
Cho phương trình \({4^{{x^2} - 2x + 1}} - m{.2^{{x^2} - 2x + 2}} + 3m - 2 = 0\). Tìm tất cả giá trị của tham số m để phương trình có 4 nghiệm phân biệt.
Tính đạo hàm của hàm số \(y = \frac{{x + 1}}{{{4^x}}}\)
Cho \(f(x) = 1 + m{x^2},(m \ne 0)\). Tìm tổng tất cả các giá trị nguyên của tham số m thuộc \({\rm{[}} - 2019;2019]\) để phương trình \(f\left( {f(x)} \right) = x\) có 4 nghiệm thực phân biệt.
Tìm giá trị lớn nhất M của hàm số \(y = \frac{1}{3}{x^3} - {x^2} + x - \frac{4}{3}\) trên [-1;1] .
Tính diện tích S của mặt cầu có bán kính bằng \(2a\).
Cho hàm số \(y = \frac{{2x - 1}}{{x - 1}}\) có đồ thị (C). Có bao nhiêu tiếp tuyến của (C) cắt trục Ox, Oy lần lượt tại hai điểm A và B thỏa mãn điều kiện \(OA = 4OB\) .
Hàm số \(y = {x^4} - 3{x^2} + 2\) có bao nhiêu điểm cực trị ?


