Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {a \ne 0} \right)\) có đồ thị như hình bên dưới.
.png)
A. Hàm số \(y = a{x^3} + b{x^2} + cx + d\) có hai điểm cực trị trái dấu.
B. Đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) cắt trục tung tại điểm có tung độ dương.
C. Đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) có hai điểm cực trị nằm bên phải trục tung.
D. Tâm dối xứng của đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) nằm bên trái trục tung.
Lời giải của giáo viên
ToanVN.com
Ta có: \(y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}.\)
Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có đường tiệm cận đứng nằm phía bên trái của trục \(Oy \Rightarrow x = - \frac{d}{c} < 0 \Rightarrow dc > 0.\)
Đường tiệm cận ngang của đồ thị hàm số nằm phía dưới trục \(Ox \Rightarrow y = \frac{a}{c} < 0 \Leftrightarrow ac < 0 \Rightarrow ad < 0.\)
Ta thấy hàm số nghịch biến trên từng khoảng xác định \( \Rightarrow y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}} < 0 \Leftrightarrow ad - bc < 0 \Leftrightarrow ad < bc.\)
Lại có đồ thị hàm số cắt Oy tại điểm có tung độ \({y_0} > 0 \Rightarrow \frac{b}{d} > 0 \Leftrightarrow bd > 0.\)
Xét hàm số: \(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)
\( \Rightarrow y' = 0 \Leftrightarrow 3a{x^2} + 2bx + c = 0(*)\)
Ta có \(ac < 0 \Rightarrow (*)\) có hai nghiệm phân biệt trái dấu.
Suy ra đồ thị hàm số có hai điểm cực trị trái dấu.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho lăng trụ đứng tam giác ABC.A'B'C'. Gọi M, N, P, Q là các điểm thuộc các cạnh \(AA',BB',CC',B'C'\) thỏa mãn \(\frac{{AM}}{{AA'}} = \frac{1}{2},\frac{{BN}}{{BB'}} = \frac{1}{3},\frac{{CP}}{{CC'}} = \frac{1}{4},\frac{{C'Q}}{{C'B'}} = \frac{1}{5}.\) Gọi V1, V2 lần lượt là thể tích khối tứ diện MNPQ và khối lăng trụ ABC.A'B'C'. Tính tỷ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Cho hình lăng trụ tam giác đều ABC.A'B'C' có \(AB = 2a,AA' = a\sqrt 3 .\) Tính thể tích V của khối lăng trụ ABC.A'B'C' theo a?
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} .\) Tính tổng M + m
Tìm tập nghiệm S của bất phương trình \({\left( {\frac{1}{2}} \right)^{ - {x^2} + 3x}} < \frac{1}{4}\)
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}.\) Biết rằng hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính thể tích V của khối lăng
trụ đó theo a.
Cho chiếc trống như hình vẽ, có đường sinh là nửa elip được cắt bởi trục lớn với độ dài trục lơn bằng 80cm, độ dài trục bé bằng 60cm. Tính thể tích V của trống (kết quả làm tròn đến hàng đơn vị)
.png)
Cho đa thức \(f\left( x \right) = {\left( {1 + 3x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\left( {n \in {N^*}} \right).\) Tìm hệ số \(a^3\) biết rằng \({a_1} + 2{a_2} + ... + n{a_n} = 49152n.\)
Tính giới hạn \(L = \lim \frac{{{n^3} - 2n}}{{3{n^2} + n - 2}}.\)
Tìm nghiệmcuủa phương trình \({\sin ^4}x - {\cos ^4}x = 0.\)
Cho tích phân \(\int\limits_1^2 {\frac{{\ln x}}{{{x^2}}}dx} = \frac{b}{c} + a\ln 2\) với a là số thực, b và c là các số nguyên dương, đồng thời \(\frac{b}{c}\) là phân số tối giản. Tính giá trị của biểu thức \(P = 2a + 3b + c\)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng \(a\sqrt 2 .\) Tính khoảng cách từ tâm O của đáy ABCD đến một mặt bên theo a.
Tìm hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{3 - 4x}}{{x - 2}}\) tại điểm có tung độ \(y = - \frac{7}{3}\)
Tìm điều kiện cần và đủ của a, b, c để phương trình \(a\sin x + b\cos x = c\) có nghiệm?
Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong \(y = - {x^3} + 12x\) và \(y = - {x^2}\)
Tìm họ nguyên hàm của hàm số \(y = {x^2} - {3^x} + \frac{1}{x}.\)


