Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên R và có bảng biến thiên:
.png)
Khẳng định nào sau đây là khẳng định đúng?
A. Hàm số có giá trị lớn nhất bằng 6 và giá trị nhỏ nhất bằng - 3.
B. Hàm số đat cực đại tại \(x=0\) và đạt cực tiểu tại \(x=1\).
C. Hàm số có đúng một cực trị.
D. Hàm số có giá trị cực tiểu bằng 1.
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho phương trình \({(4 + \sqrt {15} )^x} + (2m + 1){(4 - \sqrt {15} )^x} - 6 = 0.\) Để phương trình có hai nghiệm phân biệt \(x_1, x_2\) thỏa mãn \({x_1} - 2{\rm{ }}{x_2} = 0.\) Ta có m thuộc khoảng nào?
Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.
Cho hình chóp \(S.ABCD\) có \(AB = 5\sqrt 3 \) , \(BC =3\sqrt 3 \), góc \(\widehat {BAD} = \widehat {BCD} = {90^0}\), SA = 9 và SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD bằng \(66\sqrt 3 \), tính cotang của góc giữa mặt phẳng (SBD) và mặt đáy.
.png)
Hình vẽ bên thể hiện đồ thị của ba trong bốn hàm số \(y = {6^x},y = {8^x},y = \frac{1}{{{5^x}}}\) và \(y = \frac{1}{{{{\sqrt 7 }^x}}}.\)
.png)
Hỏi (C2) là đồ thị hàm số nào?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x + 3y – 4z +7 = 0. Tìm tọa độ véc tơ pháp tuyến của (P).
Phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{ - x + 3}}{{x - 1}}\) tại điểm có hoành độ \(x= 0\) là
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Gọi P là điểm trên cạnh SC sao cho \(SC = 5SP.\) Một mặt phẳng \((\alpha )\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi \(V_1\) là thể tích của khối chóp S.AMPN. Tìm giá trị lớn nhất của \(\frac{{{V_1}}}{V}\).
Thể tích vật tròn xoay khi quay hình phẳng (H) xác định bởi các đường \(y = \frac{1}{3}{x^3} - {x^2},y = 0,x = 0\), \(x = 3\) quanh trục Ox là
Cho hàm số \(y = f\left( x \right)\) liên tục trên R. Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(g\left( x \right) = f\left( {x - 1} \right) + \frac{{2019 - 2018x}}{{2018}}\) đồng biến trên khoảng nào dưới đây?
Cho tam giác ABC có \(A\left( {1;{\rm{ }} - 1} \right),{\rm{ }}B\left( {2;{\rm{ }}5} \right),{\rm{ }}C\left( {4;{\rm{ }} - 3} \right)\). Lập phương trình đường thẳng chứa đường trung tuyến đỉnh A của tam giác ABC.
Cho x, y là các số thực dương tùy ý, đặt \({\log _3}x = a,{\rm{ }}{\log _3}y = b\). Chọn mệnh đề đúng.
Nếu \(F'\,(x) = \frac{1}{{2x - 1}}\) và \(F(1) = 1\) thì giá trị của \(F(4)\) bằng
Cho \(a,b\) là các số dương lớn hơn 1, thay đổi thỏa mãn \(a + b = 2019\) để phương trình \(5{\log _a}x.{\log _b}x - 4{\log _a}x - 3{\log _b}x - 2019 = 0\) luôn có hai nghiệm phân biệt \({x_1},{x_2}\). Biết giá trị lớn nhất của \(\ln \left( {{x_1}{x_2}} \right)\) bằng \(\frac{3}{5}\ln \left( {\frac{m}{7}} \right) + \frac{4}{5}\ln \left( {\frac{n}{7}} \right)\), với \(m, n\) là các số nguyên dương. Tính \(S = m + 2n.\)
Hình lập phương có đường chéo bằng a thì có thể tích bằng
.png)


