Lời giải của giáo viên
ToanVN.com
Dựa vào đồ thị hàm số \(y = f\left( x \right)\) ta thấy hàm số có 3 điểm cực trị \(x = 2;\,\,x = {x_1} \in \left( {1;2} \right),\,\,x = {x_2} \in \left( {2;3} \right)\).
Xét hàm số \(y = f\left( {f\left( x \right)} \right)\) có \(y' = f'\left( x \right).f'\left( {f\left( x \right)} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\f\left( x \right) = 2\\f\left( x \right) = {x_1} \in \left( {1;2} \right)\\f\left( x \right) = {x_2} \in \left( {2;3} \right)\end{array} \right.\)
Phương trình \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = {x_1} \in \left( {1;2} \right)\\x = {x_2} \in \left( {2;3} \right)\end{array} \right.\)
Phương trình \(f\left( x \right) = 2\) có 2 nghiệm đơn phân biệt.
Phương trình \(f\left( x \right) = {x_1} \in \left( {1;2} \right)\) có 2 nghiệm đơn phân biệt.
Phương trình \(f\left( x \right) = {x_1} \in \left( {2;3} \right)\) có 2 nghiệm đơn phân biệt.
Cách nghiệm này không trùng nhau, do đó phương trình \(y' = 0\) có 9 nghiệm phân biệt (không trùng nhau), các nghiệm đều là nghiệm đơn. Do vậy hàm số \(y = f\left( {f\left( x \right)} \right)\) có 9 điểm cực trị.
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên R và có đồ thị hàm số \(y = f'\left( x \right)\) như hình bên. Hàm số \(y = f\left( {3 - x} \right)\) đồng biến trên khoảng nào dưới đây?
Phương trình \({\sin ^2}x + \sqrt 3 \sin x\cos x = 1\) có bao nhiêu nghiệm thuộc \(\left[ {0;3\pi } \right]\).
Tính diện tích xung quanh S của khối trụ có bán kính đáy \(r = 4\) và chiều cao \(h = 3.\)
Cho hàm số \(y = {x^3} - 3\left( {m + 3} \right){x^2} + 3\) có đồ thị là \(\left( C \right)\). Tìm tất cả các giá trị của m sao cho qua điểm \(A\left( { - 1; - 1} \right)\) kẻ được đúng 2 tiếp tuyến đến \(\left( C \right)\), một tiếp tuyến là \({\Delta _1}:\,\,y = - 1\) và tiếp tuyến thứ hai là \({\Delta _2}\) thỏa mãn: \({\Delta _2}\) tiếp xúc với \(\left( C \right)\) tại N đồng thời cắt \(\left( C \right)\) tại P (khác N) có hoành độ bằng 3.
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = \cos x - 2x.\)
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {{e^x} + 1} \right)\left( {{e^x} - 12} \right)\left( {x + 1} \right){\left( {x - 1} \right)^2}\) trên \(R.\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?
Cho tứ diện S.ABC có ABC là tam giác nhọn. Hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với trực tâm của tam giác AB Khẳng định nào dưới đây là sai khi nói về tứ diện đã cho?
Tìm tập nghiệm \(S\) của phương trình \({9^{{x^2} - 3x + 2}} = 1.\)
Cho tam giác ABC vuông cân tại A, đường cao \(AH = 4\). Tính diện tích xung quanh Sxq của hình nón nhận được khi quay tam giác ABC quanh trục AH.
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là hình thoi, biết \({\rm{AA}}' = 4a;\,AC = 2a,BD = a.\) Thể tích \(V\) của khối lăng trụ là
Cho hình vuông \(ABCD\) cạnh bằng \(1\), điểm \(M\) là trung điểm \(CD\). Cho hình vuông \(ABCD\) (tất cả các điểm trong của nó) quay quanh trục là đường thẳng \(AM\) ta được một khối tròn xoay. Tính thể tích của khối tròn xoay đó.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(R\) và có bảng biến thiên:
Khẳng định nào sai?
Tìm số hạng không chứ x trong khai triển của \({\left( {{x^2} - \dfrac{1}{x}} \right)^{12}}.\)
Tìm số hạng không chứ x trong khai triển của \({\left( {{x^2} - \dfrac{1}{x}} \right)^{12}}.\)
Cho khối chóp \(SABC\) có \(SA \bot \left( {ABC} \right),\;\;SA = a,\;AB = a,\;AC = 2a,\;\angle BAC = {120^0}.\) Tính thể tích khối chóp \(SABC.\)
Tìm tập xác định D của hàm số \(y = \log { _3}\left( {{x^2} - x - 2} \right).\)


