Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f’\left( x \right)\) có đồ thị như hình vẽ bên. Đặt \(M = \mathop {\max }\limits_{\left[ { – 2;6} \right]} f\left( x \right),\;m = \mathop {\min }\limits_{\left[ { – 2;6} \right]} f\left( x \right)\), T = M + m. Hỏi mệnh đề nào dưới đây là đúng?
.jpg.png)
A. \(T = f\left( 5 \right) + f\left( { – 2} \right)\)
B. \(T = f\left( 0 \right) + f\left( 2 \right)\)
C. \(T = f\left( 5 \right) + f\left( 6 \right)\)
D. \(T = f\left( 0 \right) + f\left( { – 2} \right)\)
Lời giải của giáo viên
ToanVN.com
+) Nhận xét: Đồ thị của hàm số \(y = f’\left( x \right)\) cắt trục hoành tại 5 điểm phân biệt có hoành độ lần lượt là \( – 2;\;0;\;2;\;5;\;6\) nên phương trình \(f’\left( x \right) = 0\) có 5 nghiệm phân biệt là \({x_1} = – 2;\;{x_2} = 0;\;{x_3} = 2;\;{x_4} = 5;\;{x_5} = 6\). Hơn nữa \(f’\left( x \right) > 0,\;\forall x \in \left( { – 2;\;0} \right) \cup \left( {2;\;5} \right)\) và ngược lại \(f’\left( x \right) < 0,\;\forall x \in \left( {0;\;2} \right) \cup \left( {5;\;6} \right)\) Ta lập bảng biến thiên của hàm số \(y = f\left( x \right)\).
.png)
.jpg.png)
+) Gọi \({S_1},\;{S_2},\;{S_3},\;{S_4}\) lần lượt là diện tích của các hình phẳng \(\left( {{H_1}} \right),\;\left( {{H_2}} \right),\;\left( {{H_3}} \right),\;\left( {{H_4}} \right)\)
\(\left( {{H_1}} \right)\) là hình phẳng giới hạn bởi các đường \(y = f’\left( x \right),\,y = 0,\;x = – 2,\;x = 0.\)
\(\left( {{H_2}} \right)\) là hình phẳng giới hạn bởi các đường \(y = f’\left( x \right),\,y = 0,\;x = 2,\;x = 0.\)
\(\left( {{H_3}} \right)\) là hình phẳng giới hạn bởi các đường \(y = f’\left( x \right),\,y = 0,\;x = 2,\;x = 5.\)
\(\left( {{H_4}} \right)\) là hình phẳng giới hạn bởi các đường \(y = f’\left( x \right),\,y = 0,\;x = 5,\;x = 6.\)
Ta có
\({S_1} > {S_2} \Leftrightarrow \int\limits_{ – 2}^0 {f’\left( x \right)dx} > \int\limits_0^2 { – f’\left( x \right)dx} \Leftrightarrow f\left( 0 \right) – f\left( { – 2} \right) > f\left( 0 \right) – f\left( 2 \right) \Leftrightarrow f\left( { – 2} \right) < f\left( 2 \right)\;\;\;\left( 1 \right)\)
\({S_2} > {S_3} \Leftrightarrow \int\limits_0^2 { – f’\left( x \right)dx} > \int\limits_2^5 {f’\left( x \right)dx} \Leftrightarrow f\left( 0 \right) – f\left( 2 \right) > f\left( 5 \right) – f\left( 2 \right) \Leftrightarrow f\left( 0 \right) < f\left( 5 \right)\;\;\;\left( 2 \right)\)
\({S_3} > {S_4} \Leftrightarrow \int\limits_2^5 {f’\left( x \right)dx} > \int\limits_5^6 { – f’\left( x \right)dx} \Leftrightarrow f\left( 5 \right) – f\left( 2 \right) > f\left( 5 \right) – f\left( 6 \right) \Leftrightarrow f\left( 2 \right) < f\left( 6 \right)\;\;\;\left( 3 \right)\)
+) Từ bảng biến thiên và (1), (2), (3) ta có:
\(\mathop {\max }\limits_{\left[ { – 2;6} \right]} f\left( x \right) = f\left( 5 \right),\;\mathop {\min }\limits_{\left[ { – 2;6} \right]} f\left( x \right) = f\left( { – 2} \right)\) và \(T = f\left( 5 \right) + f\left( { – 2} \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(2f\left( x \right)+1=0\) là
.jpg.png)
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với công sai d=3 và \({{u}_{2}}=9\). Số hạng \({{u}_{1}}\) của cấp số cộng bằng
Cho hàm số \(y=g\left( x \right)\) xác định và liên tục trên khoảng \(\left( -\infty ;+\infty\right),\) có bảng biến thiên như hình sau:
.png)
Mệnh đề nào sau đây đúng?
Có bao nhiêu giá trị nguyên âm của m để hàm số \(y={{x}^{4}}-4{{x}^{3}}+\left( m+25 \right)x-1\) đồng biến trên khoảng \(\left( 1;+\infty \right)\).
Tìm tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^x} \ge 2\)
Xét các số thực a và b thỏa mãn \({{2}^{a}}{{.4}^{b}}=8.\) Mệnh đề nào dưới đây đúng?
Cho hàm số y = f(x) có bảng biến thiên sau
.png)
Số nghiệm của phương trình 2f(x) - 1 = 0 là
Cho hàm số f(x) có bảng xét dấu của \(f^{\prime}(x)\) như sau:
.png)
Số điểm cực trị của hàm số đã cho là
Số giao điểm của đồ thị hàm số \(\left( c \right):y={{x}^{4}}-5{{x}^{2}}+4\) và trục hoành là
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A\left( 1;-2;4 \right),\,B\left( -2;3;5 \right)\).Tìm tọa độ véctơ \(\overrightarrow{AB}\)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): \({{(x-2)}^{2}}+{{(y+1)}^{2}}+{{(z-7)}^{2}}=36\) có tâm I và bán kính R là:
Cho tích phân \(I=\int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{3{{\ln }^{2}}x+1}}dx}\). Nếu đặt \(t=\sqrt{3{{\ln }^{2}}x+1}\) thì khẳng định nào sau đây là khẳng định đúng?
Cho khối chóp có diện tich đáy B=3 và thể tích V = 4. Chiều cao của khối chóp đã cho bằng
Gọi \({{z}_{0}}\) là nghiệm có phần ảo dương của phương trình \({{z}^{2}}+2z+5=0.\) Điểm biểu diễn của số phức \({{z}_{0}}+3i\) là


