Câu hỏi Đáp án 3 năm trước 66

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ:

Phương trình \(\dfrac{{f\left( x \right)}}{{36}} + \dfrac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m\) đúng với mọi \(x \in \left( {0;1} \right)\) khi và chỉ khi:

A. \(m < \dfrac{{f\left( 0 \right)}}{{36}} + \dfrac{1}{{\sqrt 3  + 2}}\) 

B. \(m < \dfrac{{f\left( 1 \right) + 9}}{{36}}\) 

C. \(m \le \dfrac{{f\left( 0 \right)}}{{36}} + \dfrac{1}{{\sqrt 3  + 2}}\)  

D. \(m \le \dfrac{{f\left( 1 \right) + 9}}{{36}}\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Ta có : \(\dfrac{{f\left( x \right)}}{{36}} + \dfrac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m \Leftrightarrow \dfrac{{f\left( x \right)}}{{36}} + \dfrac{{x + 3 - 4}}{{\left( {\sqrt {x + 3}  + 2} \right)\left( {x - 1} \right)}} > m \Leftrightarrow \dfrac{{f\left( x \right)}}{{36}} + \dfrac{1}{{\sqrt {x + 3}  + 2}} > m\)

Đặt \(g\left( x \right) = \dfrac{{f\left( x \right)}}{{36}} + \dfrac{1}{{\sqrt {x + 3}  + 2}} > m\,\,\forall x \in \left( {0;1} \right) \Rightarrow m \le \mathop {\min }\limits_{\left[ {0;1} \right]} f\left( x \right)\)

Xét hàm số \(g\left( x \right) = \dfrac{{f\left( x \right)}}{{36}} + \dfrac{1}{{\sqrt {x + 3}  + 2}}\) ta có:

 \(g'\left( x \right) = \dfrac{{f'\left( x \right)}}{{36}} - \dfrac{{\dfrac{1}{{2\sqrt {x + 3} }}}}{{{{\left( {\sqrt {x + 3}  + 2} \right)}^2}}} = \dfrac{{f'\left( x \right)}}{{36}} - \dfrac{1}{{2\sqrt {x + 3} {{\left( {\sqrt {x + 3}  + 2} \right)}^2}}}\)

Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta thấy

\(\begin{array}{l}f'\left( x \right) \le 1\,\forall x \in \mathbb{R} \Rightarrow \sqrt {x + 3}  < 2 \Rightarrow \sqrt {x + 3}  + 2 < 4\\ \Rightarrow 2\sqrt {x + 3} \left( {\sqrt {x + 3}  + 2} \right) < 2.2.4 = 16 \Rightarrow \dfrac{1}{{2\sqrt {x + 3} \left( {\sqrt {x + 3}  + 2} \right)}} > \dfrac{1}{{16}}\end{array}\)

\( \Rightarrow g'\left( x \right) \le \dfrac{1}{{36}} - \dfrac{1}{{16}} < 0 \Rightarrow \) Hàm số nghịch biến trên \(\left( {0;1} \right)\)

\( \Rightarrow \mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 1 \right) = \dfrac{{f\left( 1 \right)}}{{36}} + \dfrac{1}{4} \Rightarrow m \le \dfrac{{f\left( 1 \right)}}{{36}} + \dfrac{1}{4} = \dfrac{{f\left( 1 \right) + 9}}{{36}}\).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:

Xem lời giải » 3 năm trước 84
Câu 2: Trắc nghiệm

Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\). 

Xem lời giải » 3 năm trước 76
Câu 3: Trắc nghiệm

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là:

Xem lời giải » 3 năm trước 74
Câu 4: Trắc nghiệm

Hàm số \(y = {\log _3}\left( {{x^3} - x} \right)\) có đạo hàm là: 

Xem lời giải » 3 năm trước 74
Câu 5: Trắc nghiệm

Cho hàm số có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 70
Câu 6: Trắc nghiệm

Cho hình chóp \(S.\,ABC\) có \(SA\) vuông góc với đáy. Tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AC = 2a\). Thể tích khối chóp \(S.ABC\) là 

Xem lời giải » 3 năm trước 70
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:

Xem lời giải » 3 năm trước 70
Câu 8: Trắc nghiệm

Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng:

Xem lời giải » 3 năm trước 68
Câu 9: Trắc nghiệm

Trong không gian \(Oxyz\) cho \(A\left( {0;1;2} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {3;1;1} \right)\) và mặt phẳng \(\left( Q \right):\,\,x + y + z - 5 = 0\). Xét điểm \(M\) thay đổi thuộc \(\left( Q \right)\). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng:

Xem lời giải » 3 năm trước 68
Câu 10: Trắc nghiệm

Cho khối nón có độ dài đường sinh bằng \(2a\), góc giữa đường sinh và đáy bằng \({60^0}\). Thể tích của khối nón đã cho là: 

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng \(a\). 

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là: 

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Tập nghiệm của bất phương trình \({\left( {\dfrac{1}{3}} \right)^{{x^2} + 2x}} > \dfrac{1}{{27}}\) là:

Xem lời giải » 3 năm trước 65
Câu 14: Trắc nghiệm

Cho \(\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}}  = a + b\ln 2 + c\ln 3\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng: 

Xem lời giải » 3 năm trước 64
Câu 15: Trắc nghiệm

Đạo hàm của hàm số \(y = x{e^{x + 1}}\) là: 

Xem lời giải » 3 năm trước 64

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »