Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y={f}'\left( x \right)\) cho như hình dưới đây.
.jpg.png)
Đặt \(g\left( x \right)=2f\left( x \right)-{{\left( x+1 \right)}^{2}}\). Mệnh đề nào dưới đây đúng.
A. \(\mathop {\min }\limits_{\left[ { - 3;3} \right]} g\left( x \right) = g\left( 1 \right)\)
B. \(\mathop {\max }\limits_{\left[ { - 3;3} \right]} g\left( x \right) = g\left( 1 \right)\)
C. \(\mathop {\max }\limits_{\left[ { - 3;3} \right]} g\left( x \right) = g\left( 3 \right)\)
D. Không tồn tại giá trị nhỏ nhất của g(x)
Lời giải của giáo viên
ToanVN.com
.jpg.png)
Ta có \(g\left( x \right)=2f\left( x \right)-{{\left( x+1 \right)}^{2}}\)
\(\Rightarrow {g}'\left( x \right)=2{f}'\left( x \right)-\left( 2x+2 \right)=0\Leftrightarrow {f}'\left( x \right)=x+1\).
Dựa vào đồ thị ta thấy: trên khoảng \(\left( -3;3 \right)\) đồ thị của hàm số \(y={f}'\left( x \right)\) và đường thẳng y=x+1 cắt nhau tại điểm duy nhất có hoành độ là x=1.
Ta có bảng biến thiên:
.png)
Dựa vào bảng biến thiên ta có: Trên khoảng \(\left( -3;3 \right)\) hàm số \(y=g\left( x \right)\) đạt GTLN tại x=1.
Vậy \(\underset{\left[ -3;3 \right]}{\mathop{\max }}\,g\left( x \right)=g\left( 1 \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(\int\limits_{1}^{2}{f\left( x \right)\text{d}x=-3}, \int\limits_{2}^{5}{f\left( x \right)\text{d}x=5}\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x=6}\). Tính tích phân \(I=\int\limits_{1}^{5}{\left[ 2.f\left( x \right)-g\left( x \right) \right]\text{d}x}\).
Tìm tập nghiệm S của phương trình \({{2}^{x+1}}=8\).
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên như hình sau
.png)
Khẳng định nào sau đây là đúng?
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có: \({{u}_{1}}=-0,1;\,\,d=0,1\). Số hạng thứ 7 của cấp số cộng này là
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;-3 \right),B\left( \frac{3}{2};\frac{3}{2};-\frac{1}{2} \right),C\left( 1;1;4 \right),D\left( 5;3;0 \right).\) Gọi \(\left( {{S}_{1}} \right)\) là mặt cầu tâm A bán kính bằng \(3,\left( {{S}_{2}} \right)\) là mặt cầu tâm B bán kính bằng \(\frac{3}{2}.\) Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu \(\left( {{S}_{1}} \right),\left( {{S}_{2}} \right)\) đồng thời song song với đường thẳng đi qua C và D.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\left\{ \begin{align} & x=1+t \\ & y=1+t \\ & z=1+2t \\ \end{align} \right.\). Điểm nào sau đây thuộc \(\Delta \)
Tính thể tích V của khối lập phương \(ABCD.{A}'{B}'{C}'{D}'\), biết BB'=2m.
Cho số phức \(w=2-3i\). Điểm biểu diễn số phức liên hợp của w có tọa độ là
Chọn ngẫu nhiên 2 số trong 10 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tích là một số chẵn là:
Tính tích phân \(I=\int\limits_{-1}^{1}{(4{{x}^{3}}-3)\text{d}x}\).
Trong không gian Oxyz, đường thẳng đi qua gốc tọa độ O và điểm \(B\left( 1;2;3 \right)\) có phương trình tham số là:
Trong không gian Oxyz, cho hai điểm \(A\left( 5;3;4 \right)\) và \(B\left( 3;1;0 \right).\) Tìm tọa độ điểm I biết A đối xứng với B qua I.
Có bao nhiêu giá trị nguyên của tham số \(m\in \left( -2020;2020 \right)\) để \(2{{\text{a}}^{\sqrt{{{\log }_{a}}b}}}\text{ - }{{\text{b}}^{\sqrt{{{\log }_{b}}a}}}>m\sqrt{{{\log }_{a}}b}+1\) với a,b là các số thực lớn hơn 1?
Trong không gian với hệ tọa độ Oxyz, tâm và bán kính của mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y+6z+5=0\) là
Xét các số phức \({{z}_{1}},\text{ }{{z}_{2}}\) thỏa \(\left| {{z}_{1}}+1-2i \right|+\left| {{z}_{1}}-3-3i \right|=2\left| {{z}_{2}}-1-\frac{5}{2}i \right|=\sqrt{17}.\) Giá trị lớn nhất của \(P=\left| {{z}_{1}}-{{z}_{2}} \right|+\left| {{z}_{1}}+2-i \right|\) bằng


