Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ.
.jpg.png)
Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y=\left| f\left( x-1 \right)+m \right|\) có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Lời giải của giáo viên
ToanVN.com
Nhận xét: Số giao điểm của \(\left( C \right):y=f\left( x \right)\) với Ox bằng số giao điểm của \(\left( {{C}'} \right):y=f\left( x-1 \right)\) với Ox.
Vì m>0 nên \(\left( {{{C}'}'} \right):y=f\left( x-1 \right)+m\) có được bằng cách tịnh tiến \(\left( {{C}'} \right):y=f\left( x-1 \right)\) lên trên m đơn vị.
TH1: 0<m<3. Đồ thị hàm số có 7 điểm cực trị. Loại.
.jpg.png)
TH2: m=3. Đồ thị hàm số có 5 điểm cực trị. Nhận.
.jpg.png)
TH3: 3<m<6. Đồ thị hàm số có 5 điểm cực trị. Nhận.
.jpg.png)
TH4: \(m\ge 6\). Đồ thị hàm số có 3 điểm cực trị. Loại.
.jpg.png)
\(3\le m<6\). Do \(m\in {{\mathbb{Z}}^{*}}\) nên \(m\in \left\{ 3;4;5 \right\}\).
Vậy tổng giá trị tất cả các phần tử của S bằng 12.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có bảng xét dấu của đạo hàm \({{f}^{\prime }}(x)\) như sau:
.png)
Hàm số f(x) có bao nhiêu điềm cực trị?
Nếu \(\int\limits_{0}^{2}{\left[ 2f\left( x \right)+x \right]dx=5}\) thì \(\int\limits_{0}^{2}{f\left( x \right)dx}\) bằng
Cho hàm số \(f\left( x \right)=\cos 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 5 số nguyên x thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0?\)
Trong không gian với hệ tọa độ Oxy, gọi d đi qua \(A\left( 3;-1;1 \right)\), nằm trong mặt phẳng \(\left( P \right):x-y+z-5=0\), đồng thời tạo với \(\Delta :\frac{x}{1}=\frac{y-2}{2}=\frac{z}{2}\) một góc \(45{}^\circ \). Phương trình đường thẳng d là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trong không gian với hệ toạ độ Oxyz, cho mặt cầu \(\left( S \right):\,{{x}^{2}}\,+\,{{y}^{2}}\,+\,{{z}^{2}}\,=\,3\). Một mặt phẳng \(\left( \alpha \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) và cắt các tia \(Ox,\,Oy,\,Oz\) lần lượt tại các điểm \(A,\,B,\,C\) thoả mãn \(O{{A}^{2}}\,+\,O{{B}^{2}}\,+\,O{{C}^{2}}\,=\,27\). Diện tích của tam giác ABC bằng
Nếu \(\int_{-1}^{2}{f}\left( x \right)\text{d}x=2\) và \(\int_{2}^{5}{f}\left( x \right)\text{d}x=-3\) thì \(\int_{-1}^{5}{f}\left( x \right)\text{d}x\) bằng
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=2\) và \({{u}_{5}}=18\). Giá trị của \({{u}_{3}}\) bằng
Tính môđun của số phức z thỏa mãn \(\left( 1+i \right).z.\left| z \right|-1=\left( i-2 \right)\left| z \right|\) và \(\left| z \right|\) là một số nguyên
Đồ thị của hàm số \(y={{x}^{3}}-3x+2\) cắt trục hoành tại điểm có hoành độ bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ -3;1 \right]\) và có đồ thị như hình vẽ dưới. Biết diện tích các hình A,B,C lần lượt là 27, 2 và 3. Tính tích phân \(I=\int\limits_{0}^{2}{\left( {{x}^{3}}+x \right)}{f}'\left( {{x}^{2}}-3 \right)\text{d}x\).
.jpg.png)


