Lời giải của giáo viên
ToanVN.com
Từ đồ thị hàm số ta thấy hàm số có ba điểm cực trị trong đó có hai điểm cực tiểu và một điểm cực đại.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho parabol \(\left( P \right):y={{x}^{2}}\) và một đường thẳng d thay đổi cắt \(\left( P \right)\) tại hai điểm A, B sao cho AB=2018. Gọi S là diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng d. Tìm giá trị lớn nhất \({{S}_{max}}\) của S.
Giải phương trình \({{\log }_{3}}\left( x-1 \right)=2\).
Cho cấp số nhân \(\left( {{u}_{n}} \right)\) có số hạng đầu \({{u}_{1}}=5\) và \({{u}_{6}}=-160.\) Công sai q của cấp số nhân đã cho là
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + t\\ y = 1 + t\\ z = 2 + 2t \end{array} \right.\left( {t \in R} \right)\). Phương trình chính tắc của đường thẳng d là:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Có bao nhiêu số phức z thỏa \(\left| \frac{z+1}{i-z} \right|=1\) và \(\left| \frac{z-i}{2+z} \right|=1?\)
Một lớp có 20 học sinh nam và 18 học sinh nữ. Chọn ngẫu nhiên một học sinh. Tính xác suất chọn được một học sinh nữ.
Đồ thị hàm số \(y={{x}^{4}}-{{x}^{2}}-2\) cắt trục tung tại điểm có tọa độ là
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x-1}{2}=\frac{y-1}{1}=\frac{z+1}{-2}.\) Một vec tơ chỉ phương của d là
Cho số phức \(z=3+i\). Phần thực của số phức \(2z+1+i\) bằng
Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị \({f}'\left( x \right)\) như hình vẽ bên. Đặt \(g\left( x \right)=f\left( x \right)-x\). Hàm số \(g\left( x \right)\) đạt cực đại tại điểm thuộc khoảng nào dưới đây?
.jpg.png)
Tìm nguyên hàm của hàm số \(f(x)={{\text{e}}^{x}}+2\sin x\).
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.
.png)
Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?
Tất cả nguyên hàm của hàm số \(f\left( x \right)=\frac{1}{2x+3}\) là
.jpg.png)


