Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 0 \right)=0;f\left( 4 \right)>4\). Biết hàm số \(y={f}'\left( x \right)\) có đồ thị như hình vẽ bên. Tìm số điểm cực tiểu của hàm số \(g\left( x \right)=\left| f\left( {{x}^{2}} \right)-2x \right|\).
A. 2
B. 1
C. 3
D. 0
Lời giải của giáo viên
ToanVN.com
Đặt \(h\left( x \right)=f\left( {{x}^{2}} \right)-2x\Rightarrow {h}'\left( x \right)=2x.{f}'\left( {{x}^{2}} \right)-2\).
Vì \({{x}^{2}}\ge 0,\forall x\in \mathbb{R}\) nên từ đồ thị ta thấy \({f}'\left( {{x}^{2}} \right)\ge 0,\forall x\in \mathbb{R}\).
Với \(x\le 0\) ta luôn có \({h}'\left( x \right)=2x.{f}'\left( {{x}^{2}} \right)-2<0\).
Với x>0, ta có \({h}'\left( x \right)=0\Leftrightarrow {f}'\left( {{x}^{2}} \right)=\frac{1}{x}\begin{matrix} {} & \left( * \right) \\ \end{matrix}\)
Đặt \(t={{x}^{2}}\), phương trình \(\left( * \right)\) trở thành \({f}'\left( t \right)=\frac{1}{\sqrt{t}}\left( t>0 \right)\).
Xét sự tương giao giữa hai đồ thị hàm số \(y={f}'\left( t \right)\) và \(y=\frac{1}{\sqrt{t}}\) ở hình vẽ dưới đây:
Ta có \({f}'\left( t \right)=\frac{1}{\sqrt{t}}\Leftrightarrow t={{t}_{0}}\in \left( 0;1 \right)\). Khi đó \({h}'\left( x \right)=0\Leftrightarrow x=\sqrt{{{t}_{0}}}\).
Mặt khác \(h\left( 0 \right)=f\left( 0 \right)=0\) và \(h\left( 2 \right)=f\left( 4 \right)-4>0\) nên ta có bảng biến thiên của hàm \(y=h\left( x \right)\).
Từ bảng biến thiên ta có hàm số \(y=h\left( x \right)\) có một điểm cực trị và đồ thị hàm số \(y=h\left( x \right)\) cắt Ox tại hai điểm phân biệt ⇒ Hàm số \(y=g\left( x \right)=\left| h\left( x \right) \right|\) có ba điểm cực trị trong đó có hai điểm cực tiểu.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu \({f}'\left( x \right)\) như sau:
.png)
Số điểm cực trị của hàm số đã cho là
Thể tích khối nón có chiều cao h, bán kính đường tròn đáy r là:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có \(AB=A{{A}^{'}}=a,AD=2a\), (tham khảo hình bên).
.png)
Góc giữa đường thẳng CA' và mặt phẳng (ABCD) là \(\alpha \). Khi đó \(\tan \alpha \) bằng
Cho hàm số \(f\left( x \right)=2\sin 2x\). Trong các khẳng định sau, khẳng định nào đúng?
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \(A\left( 1;1;1 \right); B\left( -1;1;0 \right); C\left( 1;3;2 \right)\). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ \(\overrightarrow{a}\) nào dưới đây là một vectơ chỉ phương?
Cho \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=10\). Khi đó \(\int\limits_{5}^{2}{\left[ 2-4f\left( x \right) \right]\text{d}x}\) bằng
Có bao nhiêu số phức z thỏa \(\left| z+1-2i \right|=\left| \overline{z}+3+4i \right|\) và \(\frac{z-2i}{\overline{z}+i}\) là một số thuần ảo?
Cho \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{0}{g\left( x \right)\text{d}x}=5\) khi đó \(\int\limits_{0}^{1}{\left[ f\left( x \right)-2g\left( x \right) \right]\text{d}x}\) bằng
Hàm số nào dưới đây đồng biến trên \(\mathbb{R}\)?
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( -1;2;1 \right)\) và đi qua điểm A(0;4;-1) là.
Hàm số \(y = f\left( x \right)\) có bảng biên thiên như sau.
Khẳng định nào sau đây đúng?
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm \(A\left( 1;0;1 \right)\) và \(B\left( 3;2;-1 \right)\).
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết SA=3a, tính thể tích V của khối chóp S.ABCD.
Nghiệm của phương trình \({2^{2x - 1}} = \frac{1}{4}\) là


