Cho hàm số \(y=f\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) có bảng biến thiên như sau
.png)
Bất phương trình \(f\left( x \right)<m-{{e}^{-x}}\) đúng với mọi \(x\in \left( -2;2 \right)\) khi và chỉ khi
A. \(m\ge f\left( 2 \right)+\frac{1}{{{e}^{2}}}\)
B. \(m>f\left( -2 \right)+{{e}^{2}}\)
C. \(m>f\left( 2 \right)+\frac{1}{{{e}^{2}}}\)
D. \(m\ge f\left( -2 \right)+{{e}^{2}}\)
Lời giải của giáo viên
ToanVN.com
Ta có: \(f(x)<m-{{e}^{-x}}\,,\,\forall x\in \left( -2;2 \right)\Leftrightarrow f(x)+{{e}^{-x}}<m\,\text{ }\forall x\in \left( -2;2 \right)\text{ (*)}\).
Xét hàm số \(g(x)=f(x)+{{e}^{-x}}\)
Ta có: \({g}'(x)={f}'(x)-{{e}^{-x}}\).
Ta thấy với \(\forall x\in \left( -2;2 \right)\) thì \({f}'(x)<0\), \(-{{e}^{-x}}<0\) nên \({g}'(x)={f}'(x)-{{e}^{-x}}<0\), \(\forall x\in \left( -2;2 \right)\).
Bảng biến thiên
.png)
Từ bảng biến thiên ta có \(m\ge g(-2)\Leftrightarrow m\ge f(-2)+{{e}^{2}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Phương trình tham số của đường thẳng đi qua điểm \(M\left( 3;-1;2 \right)\) và có vectơ chỉ phương \(\overrightarrow{u}=\left( 4;5;-7 \right)\) là:
Tập nghiệm của bất phương trình \({{\log }_{\frac{1}{2}}}\left( x-2 \right)\ge -1\)
Cho hàm số \(y=\frac{2x-1}{x+5}\) Khi đó tiệm cận ngang của đồ thị hàm số là đường thẳng nào trong các đường thẳng sau đây?
Có bao nhiêu giao điểm của đồ thị hàm số \(y={{x}^{3}}+3x-3\) với trục Ox?
Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt bằng \(11\) là:
Điểm M trong hình vẽ bên là điểm biểu diễn số phức?
.jpg.png)
Số nghiệm của phương trình \({{\log }_{2}}\left( {{x}^{2}}+x \right)=1\) là
Cho hàm số bậc bốn \(y=f\left( x \right)\). Đồ thị hình bên dưới là đồ thị của đạo hàm \(f'\left( x \right)\). Hàm số \(g\left( x \right)=f\left( \sqrt{{{x}^{2}}+2x+2} \right)\) có bao nhiêu điểm cực trị ?
.jpg.png)
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.jpg.png)
Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là
Một khối trụ có chiều cao và bán kính đường tròn đáy cùng bằng R thì có thể tích là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 1;3 \right]\) thỏa mãn \(f\left( 1 \right)=2\) và \(f\left( 3 \right)=9\). Tính \(I=\int\limits_{1}^{3}{{f}'\left( x \right)\text{d}x}\).
Có bao nhiêu giá trị nguyên dương của c để tồn tại các số thực \(a,\,\,b>1\) thỏa mãn \({{\log }_{9}}a={{\log }_{12}}b={{\log }_{16}}\frac{5b-a}{c}\).
Cho \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{0}^{1}{g\left( x \right)\text{d}x}=5\), khi đó \(\int\limits_{0}^{1}{\left[ f\left( x \right)+2g\left( x \right) \right]\text{d}x}\) bằng
Trong không gian\(Oxyz\), cho hai điểm \(A\left( 2;3;-1 \right)\) và \(B\left( 0;-1;1 \right)\). Trung điểm của đoạn thẳng \(AB\) có tọa độ là


