Cho hàm số \(y=\frac{1}{3}{{x}^{3}}-\frac{1}{2}m{{x}^{2}}-4x-10,\) với \(m\) là tham số, gọi \({{x}_{1}},\,\,{{x}_{2}}\) là các điểm cực trị của hàm số đã cho. Giá trị lớn nhất của biểu thức \(P=\left( x_{1}^{2}-1 \right)\left( x_{2}^{2}-1 \right)\) bằng
A. 9
B. 1
C. 4
D. 0
Lời giải của giáo viên
ToanVN.com
Ta có \({y}'={{x}^{2}}-mx-4=0\,\,\xrightarrow{{{x}_{1}},\,\,{{x}_{2}}}\) Theo hệ thức Viet, ta được \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=m \\ & {{x}_{1}}{{x}_{2}}=-\,4 \\\end{align} \right..\)
Khi đó \(P={{\left( {{x}_{1}}{{x}_{2}} \right)}^{2}}-\left( x_{1}^{2}+x_{2}^{2} \right)+1={{\left( {{x}_{1}}{{x}_{2}} \right)}^{2}}-{{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}+2{{x}_{1}}{{x}_{2}}+1=9-{{m}^{2}}\le 9.\)
Vậy giá trị lớn nhất của \(P\) là \(9.\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
Cho \(a\) là số thực dương khác \(4.\) Tính \(I={{\log }_{\frac{a}{4}}}\left( \frac{{{a}^{3}}}{64} \right).\)
Cho đồ thị hàm số như hình vẽ. Mệnh đề nào dưới đây là đúng ?
Khi quay một tam giác đều cạnh bằng \(a\) (bao gồm cả điểm trong tam giác) quanh một cạnh của nó ta được một khối tròn xoay. Tính thể tích \(V\) của khối tròn xoay đó theo \(a.\)
Xét các số thực \(x,\,\,y\) với \(x\ge 0\) thỏa mãn điều kiện:\({{2018}^{x\,+\,3y}}+{{2018}^{xy\,+\,1}}+x+1={{2018}^{-\,xy\,-\,1}}+\frac{1}{{{2018}^{x\,+\,3y}}}-y\left( x+3 \right)\)Gọi \(m\) là giá trị nhỏ nhất của biểu thức \(T=x+2y.\) Mệnh đề nào sau đây đúng ?
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)=\dfrac{1}{2{{e}^{x}}+3}\) thỏa mãn \(F\left( 0 \right)=10.\) Tìm \(F\left( x \right).\)
Cho hàm số \(y=f\left( x \right),\) có bảng biến thiên như sau: Mệnh đề nào dưới đây đúng ?
Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( 1;-\,2;3 \right).\) Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( Oyz \right)\) là điểm \(M.\) Tọa độ của điểm \(M\) là
Tìm nguyên hàm của hàm số \(f\left( x \right)=\frac{2}{4x-3}.\)
Trong các mệnh đề sau, mệnh đề nào đúng? Số các cạnh của hình đa diện luôn luôn …
Cho hình trụ \(\left( T \right)\) có \(\left( C \right)\) và \(\left( {{C}'} \right)\) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn \(\left( C \right)\) và hình vuông ngoại tiếp của \(\left( C \right)\) có một hình chữ nhật kích thước \(a\,\,\times \,\,2a\) (như hình vẽ dưới đây). Tính thể tích \(V\) của khối trụ \(\left( T \right)\) theo \(a.\)
Trong không gian với hệ tọa độ \(Oxyz,\) phương trình nào dưới đây là phương trình mặt cầu tâm \(I\left( 1;0;-\,2 \right),\) bán kính \(R=4\,\,?\)
Tìm tập xác định \(D\) của hàm số \(y={{\left( {{x}^{2}}-3x+2 \right)}^{-\,3}}.\)
Trong các mệnh đề sau, mệnh đề nào đúng ?
- Nếu \(a\subset \,\,mp\,\left( P \right)\) và \(mp\,\left( P \right)\)//\(mp\,\left( Q \right)\) thì \(a\)//\(mp\,\left( Q \right)\) \(\left( I \right).\)
- Nếu \(a\subset \,\,mp\,\left( P \right),\,\,b\subset \,\,mp\,\left( Q \right)\) và \(mp\,\left( P \right)\)//\(mp\,\left( Q \right)\) thì \(a\)//\(b\) \(\left( II \right).\)
- Nếu \(a\)//\(mp\,\left( P \right),\) \(a\)//\(mp\,\left( Q \right)\) và \(mp\,\left( P \right)\cap mp\,\left( Q \right)=c\) thì \(c\)//\(a\) \(\left( III \right).\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec{u},\,\,\vec{v}\) tạo với nhau một góc \({{120}^{0}}\) và \(\left| {\vec{u}} \right|=2;\)\(\left| {\vec{v}} \right|=5.\) Tính giá trị biểu thức \(\left| \vec{u}+\vec{v} \right|.\)


