Câu hỏi Đáp án 3 năm trước 55

Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn \(f\left( 1 \right) = 1,\,\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}{\rm{d}}x = \frac{9}{5}} \) và \(\int\limits_0^1 {f\left( {\sqrt x } \right){\rm{d}}x} = \frac{2}{5}\). Tính tích phân \(I = \int\limits_0^1 {f\left( x \right){\rm{d}}x} \).

A. \(I = \frac{3}{5}\)

B. \(I = \frac{1}{4}\)

Đáp án chính xác ✅

C. \(I = \frac{3}{4}\)

D. \(I = \frac{1}{5}\)

Lời giải của giáo viên

verified ToanVN.com

Đặt \(t = \sqrt x \Rightarrow {t^2} = x \Rightarrow {\rm{d}}x = 2t{\rm{d}}t\). Đổi cận \(x = 0 \Rightarrow t = 0;\,\,x = 1 \Rightarrow t = 1\)

Suy ra \(\int\limits_0^1 {f\left( {\sqrt x } \right){\rm{d}}x} = 2\int\limits_0^1 {t.f\left( t \right){\rm{d}}t} \) \( \Leftrightarrow \int\limits_0^1 {t.f\left( t \right){\rm{d}}t} = \frac{1}{5}\).

Do đó \( \Leftrightarrow \int\limits_0^1 {x.f\left( x \right){\rm{d}}x} = \frac{1}{5}\)

Mặt khác \(\int\limits_0^1 {x.f\left( x \right)} {\rm{d}}x = \left. {\frac{{{x^2}}}{2}f\left( x \right)} \right|_0^1 - \int\limits_0^1 {\frac{{{x^2}}}{2}f'\left( x \right){\rm{d}}x} = \frac{1}{2} - \int\limits_0^1 {\frac{{{x^2}}}{2}f'\left( x \right){\rm{d}}x} \).

Suy ra \(\int\limits_0^1 {\frac{{{x^2}}}{2}f'\left( x \right){\rm{d}}x} = \frac{1}{2} - \frac{1}{5} = \frac{3}{{10}} \Rightarrow \int\limits_0^1 {{x^2}f'\left( x \right){\rm{d}}x} = \frac{3}{5}\)

Ta tính được \(\int\limits_0^1 {{{\left( {3{x^2}} \right)}^2}} {\rm{d}}x = \frac{9}{5}\).

Do đó \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}{\rm{d}}x - 2\int\limits_0^1 {3{x^2}f'\left( x \right){\rm{d}}x} } + \int\limits_0^1 {{{\left( {3{x^2}} \right)}^2}} {\rm{d}}x = 0 \Leftrightarrow \int\limits_0^1 {{{\left( {f'\left( x \right) - 3{x^2}} \right)}^2}{\rm{d}}x} = 0\)

\( \Leftrightarrow f'\left( x \right) - 3{x^2} = 0 \Leftrightarrow f'\left( x \right) = 3{x^2} \Leftrightarrow f\left( x \right) = {x^3} + C\).

Vì \(f\left( 1 \right) = 1\) nên \(f\left( x \right) = {x^3}\). Vậy \(I = \int\limits_0^1 {f\left( x \right)} {\rm{d}}x = \int\limits_0^1 {{x^3}} {\rm{d}}x = \frac{1}{4}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu (P) có phương trình \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 11 = 0\). Tọa độ tâm T của (P) là.

Xem lời giải » 3 năm trước 68
Câu 2: Trắc nghiệm

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AA' = a,AD = 2a. Gọi góc giữa đường chéo A'C và mặt phẳng đáy (ABCD) là \(\alpha\). Khi đó \(\tan \alpha\) bằng

Xem lời giải » 3 năm trước 67
Câu 3: Trắc nghiệm

Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Tính thể tích V của khối nón đã cho.

Xem lời giải » 3 năm trước 67
Câu 4: Trắc nghiệm

Trong không gian hệ tọa độ Oxyz, cho điểm A(1;-1;2). Phương trình mặt phẳng (Q) đi qua các hình chiếu của điểm A trên các trục tọa độ là

Xem lời giải » 3 năm trước 66
Câu 5: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải » 3 năm trước 65
Câu 6: Trắc nghiệm

Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( \alpha \right):x - 2y + 3z + 2018 = 0\) có một véctơ pháp tuyến là

Xem lời giải » 3 năm trước 65
Câu 7: Trắc nghiệm

Cho số phức z thỏa mãn điều kiện \(\left( {1 + i} \right)\bar z - 1 - 3i = 0\). Tìm phần ảo của số phức \(w = 1 - zi + \bar z\).

Xem lời giải » 3 năm trước 63
Câu 8: Trắc nghiệm

Cho cấp số cộng (un) với u1 = 2 và công sai d = 1. Khi đó u3 bằng

Xem lời giải » 3 năm trước 62
Câu 9: Trắc nghiệm

Cho hàm số y = f(x) là hàm số chẵn, liên tục trên R và số thực a dương thỏa \(\int\limits_0^a {f\left( x \right){\rm{d}}x = 3} \). Tính \(I = \int\limits_{ - a}^a {\left( {f\left( x \right) - x} \right){\rm{d}}x} \).

Xem lời giải » 3 năm trước 61
Câu 10: Trắc nghiệm

Xếp ngẫu nhiên 4 bạn nam và 5 bạn nữ ngồi vào 9 cái ghế kê theo một hàng ngang. Xác suất để có được 5 bạn nữ ngồi cạnh nhau là:

Xem lời giải » 3 năm trước 61
Câu 11: Trắc nghiệm

Trong không gian Oxyz, phương trình nào dưới đây khôngphải là phương trình đường thẳng đi qua hai điểm A(4;2;0), B(2;3;1).

Xem lời giải » 3 năm trước 61
Câu 12: Trắc nghiệm

Cho x, y, z là các số thực không âm thỏa \({2^x} + {2^y} + {2^z} = 4\). Giá trị nhỏ nhất của biểu thức P = x +y + z?

Xem lời giải » 3 năm trước 60
Câu 13: Trắc nghiệm

Cho số thực a > 1. Gọi A, B, C lần lượt là các điểm thuộc đồ thị các hàm số \(y = {a^x};\,y = {\left( {\frac{1}{a}} \right)^x};y = {\log _{\frac{1}{a}}}x.\) Biết tam giác ABC vuông cân đỉnh A,  AB = 4 và đường thẳng AC song song với trục Oy. Khi đó giá trị a bằng:

Xem lời giải » 3 năm trước 60
Câu 14: Trắc nghiệm

Cho hình nón có độ dài đường sinh bằng 2a và chu vi đáy bằng \(2\pi a\). Tính diện tích xung quanh S của hình nón.

Xem lời giải » 3 năm trước 60
Câu 15: Trắc nghiệm

Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại B, AB = BC = a, \(AA' = a\sqrt 2 \) , M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM và B'C.

Xem lời giải » 3 năm trước 60

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »