Lời giải của giáo viên
ToanVN.com
Đặt \(u = {x^2} - 4x\) (1)
Ta có BBT sau:
.png)
Ta thấy:
+ Với u < -4, phương trình (1) vô nghiệm.
+ Với u = -4, phương trình (1) có một nghiệm x = 2 > 0.
+ Với - 4 < u < 0, phương trình (1) có hai nghiệm x > 0.
+ Với \(u \ge 0\), phương trình (1) có một nghiệm x > 0
Khi đó \(3f\left( {{x^2} - 4x} \right) = m \Rightarrow f\left( u \right) = \frac{m}{3}\) (2), ta thấy:
+ Nếu \(\frac{m}{3} = - 3 \Leftrightarrow m = - 9\), phương trình (2) có một nghiệm u = 0 nên phương trình đã cho có một nghiệm x > 0.
+ Nếu \(- 3 < \frac{m}{3} < - 2 \Leftrightarrow - 9 < m < - 6\), phương trình (2) có một nghiệm u > 0 và một nghiệm \(u \in \left( { - 2;0} \right)\) nên phương trình đã cho có ba ngiệm x > 0.
+ Nếu \(\frac{m}{3} = - 2 \Leftrightarrow m = - 6\), phương trình (2) có một nghiệm u = -4, một nghiệm \(u \in \left( { - 2;0} \right)\) và một nghiệm u > 0 nên phương trình đã cho có bốn nghiệm x > 0.
+ Nếu \( - 2 < \frac{m}{3} < 2 \Leftrightarrow - 6 < m < 6\), phương trình (2) có một nghiệm u < -4, hai nghiệm \(u \in \left( { - 4;0} \right)\) và một nghiệm u > 0 nên phương trình đã cho có năm nghiệm x > 0.
+ Nếu \(\frac{m}{3} = 2 \Leftrightarrow m = 6\), phương trình (2) có một nghiệm u < - 4, một nghiệm u = -2 và một nghiệm u > 0 nên phương trình đã cho có ba nghiệm x > 0.
+ Nếu \(\frac{m}{3} > 2 \Leftrightarrow m > 6\), phương trình (2) có một nghiệm u < -4 và một nghiệm u > 0 nên phương trình đã cho có một nghiệm x > 0.
Vậy \( - 9 < m \le 6\) ⇒ có 15 giá trị m nguyên thỏa ycbt.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu cách chọn một học sinh từ một nhóm gồm 5 học sinh nam và 7 học sinh nữ là
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\frac{{\sqrt 3 a}}{2}\) và O là tâm của đáy. Gọi M, N, P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng (SAB), (SBC), (SCD) và (SDA). Thể tích của khối chóp O.MNPQ bằng
Tập nghiệm của bất phương trình \({\log _3}\left( {36 - {x^2}} \right) \ge 3\) là
Cho khối chóp có diện tích đáy \(B = 2{a^2}\) và chiều cao h = 9a. Thể tích của khối chóp đã cho bằng
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y + 1}}{4} = \frac{{z + 2}}{{ - 1}}\). Điểm nào dưới đây thuộc d?
Cho hình nón (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng
Gọi x1 và x2 là hai nghiệm phức của phương trình \({z^2} - z + 2 = 0\). Khi đó \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 4\). Tâm của (S) có tọa độ là
Cho khối lăng trụ có diện tích đáy B = 6, và chiều cao h = 3. Thể tích của khối lăng trụ đã cho bằng
Có bao nhiêu cặp số nguyên dương (m; n) sao cho \(m + n \le 10\) và ứng với mỗi cặp (m;n) tồn tại đúng 3 số thực \(a \in \left( { - 1;1} \right)\) thỏa mãn \(2{a^m} = n\ln \left( {a + \sqrt {{a^2} + 1} } \right)\)?
Cho cấp số cộng (un) với u1 = 8 và công sai d = 3. Giá trị của u2 bằng
Số giao điểm của đồ thị hàm số \(y = - {x^3} + 3x\) với trục hoành là
Trong không gian Oxyz, cho điểm M(2;-1;3) và mặt phẳng \(\left( P \right):3x - 2y + z + 1 = 0\). Phương trình mặt phẳng đi qua M và song song với (P) là
.png)


