Cho hàm số \(f\left( x \right)=\left( {{m}^{2024}}+1 \right){{x}^{4}}+\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right){{x}^{2}}+{{m}^{2024}}+2024\), với m là tham số. Số cực trị của hàm số \(y=\left| f\left( x \right)-2023 \right|\).
A. 3
B. 5
C. 6
D. 7
Lời giải của giáo viên
ToanVN.com
Đặt \(g\left( x \right)=f\left( x \right)-2023\).
Ta có: \({g}'\left( x \right)={f}'\left( x \right)=4\left( {{m}^{2024}}+1 \right){{x}^{3}}+2\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right)x\);
Ta thấy \(\frac{2{{m}^{2024}}+{{2}^{2024}}{{m}^{2}}+3}{2\left( {{m}^{2024}}+1 \right)}>0, \forall m\in \mathbb{R}\) nên hàm số \(g\left( x \right)=f\left( x \right)-2023\) luôn có 3 cực trị gồm \({{x}_{1}}=0,\,\,{{x}_{2,3}}=\pm \sqrt{\frac{2{{m}^{2024}}+{{2}^{2024}}{{m}^{2}}+3}{2\left( {{m}^{2024}}+1 \right)}}\).
Ta lại có: \({{a}_{g}}={{m}^{2024}}+1>0\Rightarrow \) Đồ thị hàm \(g\left( x \right)\) có nhánh phải hướng lên trên.
Mặt khác: \(g\left( \pm 1 \right)=\left( {{m}^{2024}}+1 \right)+\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right)+{{m}^{2024}}+1=-{{2}^{2024}}{{m}^{2}}-1<0,\,\,\forall m\in \mathbb{R}\)
Ta có bảng biến thiên hàm \(g\left( x \right)=f\left( x \right)-2023\) như sau:
.png)
Từ bảng biến thiên, ta thấy đồ thị hàm số \(g\left( x \right)\) luôn có ba điểm cực trị, trong đó có hai điểm cực tiểu nằm bên dưới trục Ox.
Vì vậy số cực trị của hàm số \(y=\left| f\left( x \right)-2023 \right|\) là \(m+n=3+4=7\); trong đó m=3 là số cực trị của hàm \(g\left( x \right)\), n=4 là số giao điểm của hai đồ thị hàm số \(\left\{ \begin{array}{l} y = g\left( x \right)\\ y = 0\,\,\left( {Ox} \right) \end{array} \right..\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với đường thẳng \(d:\frac{x-1}{2}=\frac{y}{1}=\frac{z+1}{-1}\).
Tìm tập xác định \(\text{D}\) của hàm số \(y=\frac{1}{\sqrt{2-x}}+\ln \left( x-1 \right)\).
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=-2{{x}^{3}}+3{{x}^{2}}+1\).
Cho hình nón đỉnh \(S\) có bán kính đáy \(R=a\sqrt{2}\), góc ở đỉnh bằng \({{60}^{0}}\). Diện tích xung quanh của hình nón bằng:
Cho hàm số \(y=f\left( x \right)\) có \(\underset{x\to +\infty }{\mathop{\lim }}\,f\left( x \right)=0\) và \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=+\infty \). Khẳng định nào sau đây là khẳng định đúng?
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;1 \right)\) và mặt phẳng \(\left( P \right):x+2y-2z-1=0.\) Gọi B là điểm đối xứng với A qua \(\left( P \right)\). Độ dài đoạn thẳng AB là
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) và \(AB=a\), \(AD=a\sqrt{3}\); \(A'O\) vuông góc với đáy \(\left( ABCD \right)\). Cạnh bên \(AA'\) hợp với mặt đáy \(\left( ABCD \right)\) một góc \({{45}^{0}}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ đã cho.
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(a\). Thể tích khối trụ bằng:
Tính giá trị của biểu thức \(P={{\log }_{a}}\left( a.\sqrt[3]{a\sqrt{a}} \right)\) với \(0<a\ne 1.\)
Cho hai số thực b và c \(\left( c>0 \right)\). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình \({{z}^{2}}+2bz+c=0\). Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?
.png)
Cho hàm số \(y=\frac{x+2}{x-1}\) có đồ thị (C). Chọn mệnh đề sai?


