Cho hàm số \(f\left( x \right)\) xác định trên R và có đồ thị hàm số \(y = f'\left( x \right)\) là đường cong trong hình bên. Mệnh đề nào dưới đây đúng?
A. Hàm số \(f\left( x \right)\) đồng biến trên khoảng \(\left( {1;2} \right)\).
B. Hàm số \(f\left( x \right)\) đồng biến trên khoảng \(\left( { - 2;1} \right)\).
C. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
D. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng \(\left( {0;2} \right)\).
Lời giải của giáo viên
ToanVN.com
Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có \(\left\{ \begin{array}{l}f'\left( x \right) > 0 \Leftrightarrow x \in \left( { - 2;0} \right) \cup \left( {2; + \infty } \right)\\f'\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {0;2} \right)\end{array} \right.\) , do đó hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( { - 2;0} \right)\) và \(\left( {2; + \infty } \right)\), nghịch biến trên \(\left( { - \infty ; - 2} \right)\) và \(\left( {0;2} \right)\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} - x + 3\) tại điểm \(M\left( {1;0} \right)\) là.
Gọi \(\left( {x;y} \right)\) là nghiệm dương của hệ phương trình \(\left\{ \begin{array}{l}\sqrt {x + y} + \sqrt {x - y} = 4\\{x^2} + {y^2} = 128\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\end{array} \right.\). Tổng \(x + y\) bằng:
Số đường tiệm cận của đồ thị hàm số\(y = \dfrac{{{x^2} - 3x + 2}}{{{x^2} - 4}}\) là.
Đồ thị hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) có tiệm cận ngang là.
Hàm số \(y = {x^4} - 8{x^2} - 4\) nghịch biến trên các khoảng.
Phương trình tiếp tuyến với đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\) song song với đường thẳng \(\left( \Delta \right):\,\,2x + y + 1 = 0\) là.
Cho hình chóp tam giác \(S.ABC\)với \(ABC\)là tam giác đều cạnh \(a\). \(SA \bot (ABC)\) và \(SA = a\sqrt 3 .\) Tính thể tích của khối chóp \(S.ABC\).
Cho khối lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Các điểm E và \(F\) lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi \({V_1}\) là thể tích khối chứa điểm A’ và \({V_2}\) là thể tích khối chứa điểm C’. Khi đó \(\dfrac{{{V_1}}}{{{V_2}}}\) là.
Biết \({m_0}\) là giá trị của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx - 1\) có hai điểm cực trị \({x_1},\,\,{x_2}\) sao cho \(x_1^2 + x_2^2 - {x_1}{x_2} = 13\). Mệnh đề nào dưới đây đúng?
Giá trị lớn nhất của hàm số \(y = \dfrac{{{x^2} - 3x}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng.
Hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\). Khẳng định nào sau đây đúng.
Điểm cực tiểu của hàm số \(y = {x^3} - 3{x^2} - 9x + 2\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,{\rm{ }}AD = 2a\), \(SA\) vuông góc với mặt phẳng\(\left( {ABCD} \right)\), \(SA = a\sqrt 3 \). Thể tích của khối chóp \(S.ABCD\) là.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA\( \bot \)(ABCD) và \(SB = \sqrt 3 \). Thể tích khối chóp S.ABCD là.


