Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [0;2]. Có bao nhiêu số nguyên a thuộc đoạn [-3;2] sao cho \(M \le 2\,m?\)
A. 7
B. 5
C. 6
D. 4
Lời giải của giáo viên
ToanVN.com
Xét hàm số \(f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + a\) trên đoạn [0;2], có:
\(f'\left( x \right) = 4{x^3} - 12{x^2} + 8x\).
\(f'\left( x \right) = 0 \Leftrightarrow 4{x^3} - 12{x^2} + 8x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = 2 \end{array} \right.\).
Vì \(f(0) = a,f\left( 1 \right) = 1 - 4 + 4 + a = a + 1,f\left( 2 \right) = {2^4} - {4.2^3} + {4.2^2} + a = a\) nên trên đoạn [0;2] giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + a\) lần lượt là a + 1, a.
Suy ra \(M = \mathop {\max }\limits_{\left[ {0;\,2} \right]} \left\{ {\left| a \right|;\left| {a + 1} \right|} \right\};m = \mathop {\min }\limits_{\left[ {0;\,2} \right]} \left\{ {\left| a \right|;\left| {a + 1} \right|} \right\}\) nếu \(a\left( {a + 1} \right) > 0\). m = 0 nếu \(a\left( {a + 1} \right) \le 0\).
TH1: \(a \in \left[ { - \frac{1}{2};2} \right]\)
\(M = \left| {a + 1} \right|;m = \left| a \right|\). Khi đó \(M \le 2\,m \Leftrightarrow \left| {a + 1} \right| \le 2\left| a \right| \Leftrightarrow 3{a^2} - 2a - 1 \ge 0 \Leftrightarrow \left[ \begin{array}{l} a \le - \frac{1}{3}\\ a \ge 1 \end{array} \right.\), vì \(a \in Z\) nên chọn \(a \in \left\{ {1;\,2} \right\}\)
TH2: \(a \in \left[ { - 3; - \frac{1}{2}} \right)\)
\(M = \left| a \right|;m = \left| {a + 1} \right|\). Khi đó \(M \le 2\,m \Leftrightarrow \left| a \right| \le 2\left| {a + 1} \right| \Leftrightarrow 3{a^2} + 8a + 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l} a \ge - \frac{2}{3}\\ a \le - 2 \end{array} \right.\), vì \(a \in Z\) nên chọn \(a \in \left\{ { - 3;\, - 2} \right\}\)
Vậy có 4 giá trị a thỏa yêu cầu.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz mặt phẳng (P) đi qua gốc tọa độ và vuông góc với đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{ - y + 1}}{1} = \frac{z}{2}\) có phương trình là:
Tìm tập nghiệm S của bất phương trình \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\).
Cho \(I = \int\limits_3^8 {\frac{1}{{x + x\sqrt {x + 1} }}} {\rm{d}}x = \frac{1}{2}\ln \frac{a}{b} + \frac{c}{d}\) với a,b,c,d là các số nguyên dương và \(\frac{a}{b},\,\frac{c}{d}\) tối giản. Giá trị của abc - d bằng
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(-3;1;2), B(1;-1;0) là
Khối chóp S.ABCD có đáy là hình thoi và \(SA \bot (ABCD)\) có thể tích bằng
Bất phương trình \({3^{2x + 1}} - {7.3^x} + 2 > 0\) có nghiệm là
Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là
Có 8 học sinh nam, 5 học sinh nữ và 1 thầy giáo được sắp xếp ngẫu nhiên đứng thành một vòng tròn. Tính xác suất để thầy giáo đứng giữa 2 học sinh nam.
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} } {\rm{d}}x\) và \(u = {x^2} - 1\). Mệnh đề nào dưới đây sai ?
Cho hàm số f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [-1;3]. Tính M - m.
Với a, b, c là các số thực dương tùy ý khác 1 và \({\log _a}c = x,{\log _b}c = y\). Khi đó giá trị của \({\log _c}\left( {ab} \right)\) là
Cho khối lăng trụ đứng có đáy là tam giác vuông, độ dài hai cạnh góc vuông là 3a, 4a và chiều cao khối lăng trụ là 6a. Thể tích của khối lăng trụ bằng
Hàm số \(y = {\log _2}\left( {2x - 3} \right)\) có tập xác định là
.png)


