Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là \({f}'\left( x \right)={{\left( x-1 \right)}^{2}}\left( x-3 \right)\). Mệnh đề nào dưới đây đúng?
A. Hàm số không có cực trị
B. Hàm số có một điểm cực đại
C. Hàm số có đúng một điểm cực trị.
D. Hàm số có hai điểm cực trị
Lời giải của giáo viên
ToanVN.com
Cho \({f}'\left( x \right)=0\Leftrightarrow \left[ \begin{align} & x=1 \\ & x=3 \\ \end{align} \right.\)
Bảng biến thiên:
.png)
Từ bảng biến thiên ta thấy hàm số có đúng một điểm cực trị và là điểm cực tiểu.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)
Với \(\alpha \) là một số thực bất kỳ, mệnh đề nào sau đây sai?
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) tương ứng có phương trình là
Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .
Tìm giá trị lớn nhất (max) và giá trị nhỏ nhất (min) của hàm số \(y=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{3}{2};\,3 \right]\).
Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .
Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .
Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:
Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ sau:
.jpg.png)
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có \(3\) nghiệm phân biệt.
Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là
Cho lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại B. Biết AB=3cm, \(B{C}'=3\sqrt{2}cm\). Thể tích khối lăng trụ đã cho là:
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 0 \right\}\) và thỏa mãn \(2f\left( 3x \right)+3f\left( \frac{2}{x} \right)=-\frac{15x}{2}\), \(\int\limits_{3}^{9}{f\left( x \right)\text{d}x}=k\). Tính \(I=\int\limits_{\frac{1}{2}}^{\frac{3}{2}}{f\left( \frac{1}{x} \right)\text{d}x}\) theo \(k\).


