Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên tập hợp \(\mathbb{R}\) thỏa mãn \(\int\limits_1^2 {f\left( {3x - 6} \right)dx = 3} \) và \(f\left( { - 3} \right) = 2\). Giá trị của \(\int\limits_{ - 3}^0 {xf'\left( x \right)dx} \) bằng:
A. -3
B. 11
C. 6
D. 9
Lời giải của giáo viên
ToanVN.com
Ta gọi \(I = \int\limits_{ - 3}^0 {xf'\left( x \right)dx} \).
Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\), khi đó ta có:
\(\begin{array}{l}I = \left. {xf\left( x \right)} \right|_{ - 3}^0 - \int\limits_{ - 3}^0 {f\left( x \right)dx} \\I = 3f\left( { - 3} \right) - \int\limits_{ - 3}^0 {f\left( x \right)dx} \\I = 6 - \int\limits_{ - 3}^0 {f\left( x \right)dx} \end{array}\)
Xét tích phân \(\int\limits_1^2 {f\left( {3x - 6} \right)dx = 3} \).
Đặt \(t = 3x - 6 \Rightarrow dt = 3dx\).
Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = - 3\\x = 2 \Rightarrow t = 0\end{array} \right.\).
Khi đó ta có: \(\int\limits_1^2 {f\left( {3x - 6} \right)dx} = \frac{1}{3}\int\limits_{ - 3}^0 {f\left( t \right)dt} \)\( = \frac{1}{3}\int\limits_{ - 3}^0 {f\left( x \right)dx} = 3\)
\( \Leftrightarrow \int\limits_{ - 3}^0 {f\left( x \right)dx} = 9.\)
Vậy \(I = 6 - 9 = - 3.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( {3x} \right) = f\left( x \right) - 2x,\,\,\,\forall x \in \mathbb{R}\) và \(\int\limits_0^1 {f\left( x \right)dx = 5} \). Giá trị \(\int\limits_1^3 {f\left( x \right)dx} \) bằng
Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(O\left( {0;0;0} \right)\) và vuông góc với đường thẳng \(d:\,\,\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) là
Hai số phức \(\frac{3}{2} + \frac{{\sqrt 7 }}{2}i\) và \(\frac{3}{2} - \frac{{\sqrt 7 }}{2}i\) là nghiệm của phương trình nào sau đây?
Số giá trị nguyên của tham số m để hàm số \(y = {x^3} - m{x^2} + 3mx\) đồng biến trên \(\left( { - \infty ; + \infty } \right)\) là
Họ các nguyên hàm của hàm số \(f\left( x \right) = {\left( {2x + 3} \right)^5}\) là
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng
Trong không gian Oxyz, phương trình mặt cầu có tâm \(I\left( { - 1;1; - 2} \right)\) và đi qua điểm \(A\left( {2;1;2} \right)\) là
Cho tứ diện MNPQ có MQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP = 5\). Khoảng cách từ M đến mặt phẳng \(\left( {NPQ} \right)\) bằng
Có bao nhiêu số phức z thỏa mãn \(\left| {{z^2}} \right| = 2\left| {z - \overline z } \right|\) và \(\left| {z - 2 - 2i} \right| = \left| {z - 1 - i} \right|\) ?
Giá trị dương của tham số m sao cho diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\) \(x = 0,\) \(x = m\) bằng 10 là
Cho tích phân \(I = \int\limits_0^\pi {{x^2}\cos xdx} \) và đặt \(u = {x^2},\,\,dv = \cos xdx\). Mệnh đề nào sau đây là mệnh đề
đúng?
Tích phân \(\int\limits_0^1 {\left( {3x + 1} \right)\left( {x + 3} \right)dx} \) bằng
Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left( {f'\left( x \right)} \right)^2} + f\left( x \right).f''\left( x \right) = 15{x^4} + 12x,\,\,\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = f'\left( 0 \right) = 1\). Giá trị của \({f^2}\left( 1 \right)\) bằng:
Diện tích của hình phẳng giới hạn bởi hai đường thẳng \(y = 18{x^2}\) và \(y = 18x\) bằng


