Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right)={{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-4x \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right)=f\left( 2{{x}^{2}}-12x+m \right)\) có đúng 5 điểm cực trị?
A. 17
B. 16
C. 19
D. 18
Lời giải của giáo viên
ToanVN.com
\(g'\left( x \right)=\left( 4x-12 \right).f'\left( 2{{x}^{2}}-12x+m \right)\)
\(=\left( 4x-12 \right){{\left( 2{{x}^{2}}-12x+m+1 \right)}^{2}}\left( 2{{x}^{2}}-12x+m \right)\left( 2{{x}^{2}}-12x+m-4 \right)\)
Hàm số \(g\left( x \right)\) có đúng 5 điểm cực trị
\(\Leftrightarrow g'\left( x \right)\) đổi dấu 5 lần
\(\Leftrightarrow g'\left( x \right)=0\) có 5 nghiệm đơn phân biệt
\(\Leftrightarrow \) phương trình \(2{{x}^{2}}-12x+m=0\) có hai nghiệm phân biệt khác 3 và phương trình \(2{{x}^{2}}-12x+m-4=0\) có hai nghiệm phân biệt khác 3 và các nghiệm này khác nhau
Phương trình \(2{{x}^{2}}-12x+m=0\) có hai nghiệm phân biệt khác 3 và phương trình \(3{{x}^{2}}-12x+m-4=0\) có hai nghiệm phân biệt khác 3.
\( \Leftrightarrow \left\{ \begin{array}{l} \Delta {'_1} > 0\\ \Delta {'_2} > 0\\ {2.3^2} - 12.3 + m \ne 0\\ {2.3^2} - 12.3 + m - 4 \ne 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 36 - 2m > 0\\ 36 - 2\left( {m - 4} \right) > 0\\ m \ne 18\\ m \ne 22 \end{array} \right. \Leftrightarrow m < 18\)
Với điều kiện \(m<18\) thì phương trình \(2{{x}^{2}}-12x+m=0\) có hai nghiệm phân biệt là \(a;b\) và phương trình \(2{{x}^{2}}-12x+m-4=0\) có hai nghiệm phân biệt là \(c,d.\)
Theo Vi-ét ta có \(\left\{ \begin{array}{l} a + b = c + d = 6\\ a.b = m\\ c.d = m - 4 \end{array} \right.\)
Nếu \(a=c\) thì \(b=d\) (vì \(a+b=c+d=6)\Rightarrow a.b=c.d\Leftrightarrow m=m-4\) điều này là vô lí
Do đó các nghiệm của hai phương trình \(2{{x}^{2}}-12x+m=0\) và \(2{{x}^{2}}-12x+m-4=0\) luôn khác nhau.
Mà \(m\) là số nguyên dương nên \(m\in \left\{ 1;2;3;4...17 \right\}.\) Do đó có 17 giá trị \(m\) thỏa mãn bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right)={{x}^{3}}{{\left( x-1 \right)}^{2}}\left( x+2 \right).\) Hỏi hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với cạnh \(AD=2CD.\) Biết hai mặt \(\left( SAC \right),\left( SBD \right)\) cùng vuông góc với mặt đáy và đoạn \(BD=6;\) góc giữa \(\left( SCD \right)\) và mặt đáy bằng \({{60}^{0}}.\) Hai điểm \(M,N\) lần lượt là trung điểm của \(SA,SB.\) Thể tích khối đa diện \(ABCDMN\) bằng
Tập nghiệm của bất phương trình \({{\log }_{2}}\left( x\sqrt{{{x}^{2}}+2}+4-{{x}^{2}} \right)+2x+\sqrt{{{x}^{2}}+2}\le 1\) là \(\left( -\sqrt{a};-\sqrt{b} \right].\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) với \(AD=DC=a,AB=2a.\) Hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAD \right)\)cùng vuông góc với đáy. Góc giữa \(SC\) và mặt đáy bằng \({{60}^{0}}.\) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB.\)
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,AB=a\sqrt{3},BC=2a,\) đường thẳng \(AC'\) tạo với mặt phẳng \(\left( BCC'B' \right)\) một góc \({{30}^{0}}.\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng
Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\},\) liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ.
.png)
Số giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có 3 nghiệm phân biệt là
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn: \({{f}^{3}}\left( 2-x \right)-2{{f}^{2}}\left( 2+3x \right)+{{x}^{2}}g\left( x \right)+36x=0,\forall x\in \mathbb{R}.\) Tính \(A=3f\left( 2 \right)+4f'\left( 2 \right).\)
Cho hàm số \(y=f\left( x \right)\). Đồ thị của hàm số \(y=f'\left( x \right)\) như hình bên.
.jpg.png)
Đặt \(h\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}.\) Mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right)={{\left( x+1 \right)}^{3}}{{\left( x-2 \right)}^{5}}{{\left( x+3 \right)}^{3}}.\) Số điểm cực trị của hàm số \(f\left( \left| x \right| \right)\) là
Cho hàm số \(y=-{{x}^{4}}+2{{x}^{2}}\) có đồ thị như hình vẽ bên.
.jpg.png)
Tìm tất cả các giá trị \(m\) để phương trình \(-{{x}^{4}}+2{{x}^{2}}={{\log }_{2}}m\) có bốn nghiệm thực phân biệt
Cho các số thực dương \(x,y,z\) và thỏa mãn \(x+y+z=3.\) Biểu thức \(P={{x}^{4}}+{{y}^{4}}+8{{z}^{4}}\) đạt GTNN bằng \(\frac{a}{b},\) trong đó \(a,b\) là các số tự nhiên dương, \(\frac{a}{b}\) là phân số tối giản. Tính \(a-b.\)
Cho parabol \(\left( P \right):y=-{{x}^{2}}\) và đồ thị hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx-2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P=a-3b-5c.\)
.jpg.png)
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right)={{\left( x+2 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( -x+5 \right).\) Số điểm cực trị của hàm số \(y=f\left( x \right)\) là
Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right)?\)
Cho mặt nón tròn xoay đỉnh \(S\) đáy là đường tròn tâm \(O\) có thiết diện qua trục là một tam giác đều cạnh bằng \(a.\text{ }A,B\) là hai điểm bất kì trên đường tròn \(\left( O \right).\) Thể tích khối chóp \(S.OAB\) đạt giá trị lớn nhất bằng


