Cho hàm số \(y={{x}^{4}}-3{{x}^{2}}+m\) có đồ thị \(\left( {{C}_{m}} \right)\),với m là tham số thực.Giả sử \(\left( {{C}_{m}} \right)\) cắt trục Ox tại bốn điểm phân biệt như hình vẽ
Gọi \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) là diện tích các miền gạch chéo được cho trên hình vẽ. Giá trị của m để \({{S}_{1}}+{{S}_{3}}={{S}_{2}}\) là
A. \(\frac{5}{2}\)
B. \(\frac{-5}{2}\)
C. \(\frac{5}{4}\)
D. \(\frac{-5}{4}\)
Lời giải của giáo viên
ToanVN.com
Gọi \({{x}_{1}}\) là nghiệm dương lớn nhất của phương trình \({{x}^{4}}-3{{x}^{2}}+m=0\),ta có \(m=-x_{1}^{4}+3x_{1}^{2} \left( 1 \right)\).
Vì \({{S}_{1}}+{{S}_{3}}={{S}_{2}}\) và \({{S}_{1}}={{S}_{3}}\) nên \({{S}_{2}}=2{{S}_{3}}\) hay \(\int\limits_{0}^{{{x}_{1}}}{f\left( x \right)\text{d}x}=0\).
Mà \(\int\limits_{0}^{{{x}_{1}}}{f\left( x \right)\text{d}x} =\int\limits_{0}^{{{x}_{1}}}{\left( {{x}^{4}}-3{{x}^{2}}+m \right)\text{d}x} =\left. \left( \frac{{{x}^{5}}}{5}-{{x}^{3}}+mx \right) \right|_{0}^{{{x}_{1}}} =\frac{x_{1}^{5}}{5}-x_{1}^{3}+m{{x}_{1}} ={{x}_{1}}\left( \frac{x_{1}^{4}}{5}-x_{1}^{2}+m \right)\).
Dođó,\({{x}_{1}}\left( \frac{x_{1}^{4}}{5}-x_{1}^{2}+m \right)=0 \Leftrightarrow \frac{x_{1}^{4}}{5}-x_{1}^{2}+m=0 \left( 2 \right)\).
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), ta có phương trình \(\frac{x_{1}^{4}}{5}-x_{1}^{2}-x_{1}^{4}+3x_{1}^{2}=0 \Leftrightarrow -4x_{1}^{4}+10x_{1}^{2}=0 \Leftrightarrow x_{1}^{2}=\frac{5}{2}\).
Vậy \(m=-x_{1}^{4}+3x_{1}^{2} =\frac{5}{4}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{1}{\left[ f\left( x \right)+3{{x}^{2}} \right]\text{d}x}=6\). Khi đó \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm \({f}'\left( x \right)\) như sau:
.png)
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+3}{x-1}\) trên đoạn \(\left[ 2;3 \right]\) lần lượt là M và m. Tổng M+m bằng
Nghiệm của phương trình \({{\log }_{3}}\left( 1-3x \right)=2\) là
Với a là số thực dương tùy ý, \(\ln \left( {ea} \right)\) bằng
Tiệm cận đứng của đồ thị hàm số \(y=\frac{-2x+4}{-x+1}\) là đường thẳng:
Cho \(y=f\left( x \right)\) có đồ thị của \(y={f}'\left( x \right)\) như hình vẽ dưới đây.
Đặt \(M=\underset{\left[ \text{-2;6} \right]}{\mathop{\text{max}}}\,\text{ }f\left( x \right), m=\underset{\left[ \text{-2;6} \right]}{\mathop{\text{min}}}\,\text{ }f\left( x \right)\). Giá trị của biểu thức M+m bằng
Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng \(d:\frac{x-2}{-1}=\frac{y-1}{2}=\frac{z}{1}\) là
Cho số phức z=2+3i. Tìm môđun của số phức \(w=\left( 1+i \right)z-\bar{z}\)
Cho hàm số \(f\left( x \right)=-3{{x}^{2}}+1.\) Trong các khẳng định sau, khẳng định nào đúng?
Cho khối chóp S.ABCD có đáy là hình vuông cạnh đáy bằng a và SA vuông góc với đáy với \(SA=a\sqrt{3}.\) Thể tích của khối chóp S.ABCD bằng
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tìm tọa độ tâm I của mặt cầu \(\left( S \right)\).
Với a là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;1 \right), B\left( 0;3;-1 \right)\). Mặt cầu \(\left( S \right)\) đường kính AB có phương trình là


