Cho hàm số \(y=f(x)\) có đạo hàm, liên tục trên R. Gọi \(d_1, d_2\) lần lượt là tiếp tuyến của đồ thị hàm số \(y = f\left( {{x^4}} \right)\) và \(y = g\left( x \right) = {x^3}f\left( {6x - 5} \right)\) tại điểm có hoành độ bằng 1. Biết rằng hai đường thẳng \(d_1, d_2\) có tích hệ số góc bằng - 6, giá trị nhỏ nhất của \(Q = {\left| {f\left( 1 \right)} \right|^3} - 3\left| {f\left( 1 \right)} \right| + 2\) bằng
A. 3
B. 4
C. 5
D. 2
Lời giải của giáo viên
ToanVN.com
Ta có \({k_1} = 4f'\left( 1 \right)\) và \({k_2} = 3f\left( 1 \right) + 6f'\left( 1 \right).\)
Theo giả thiết ta có \({k_1}.{k_2} = - 6 \Leftrightarrow 24{\left[ {f'\left( 1 \right)} \right]^2} + 12f\left( 1 \right).f'\left( 1 \right) + 6 = 0.\)
Điều kiện để tồn tại \(f'(1)\) thì \(\Delta \ge 0 \Leftrightarrow \left| {f\left( 1 \right)} \right| \ge 2.\)
Đặt \(t = \left| {f\left( 1 \right)} \right|\) với \(t \ge 2.\) Khi đó \(Q = f\left( t \right) = {t^3} - 3t + 2 \ge \mathop {\min }\limits_{\left[ {2; + \infty } \right)} f\left( t \right) = 4.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tam giác ABC vuông tại A với \(AB = a,AC = 2a\) quay xung quanh cạnh AB ta được một khối nón tròn xoay có đường sinh l bằng bao nhiêu ?
Diện tích ba mặt của hình hộp chữ nhật lần lượt là \(15c{m^2},24c{m^2},40c{m^2}\). Thể tích của khối hộp đó là
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x + 8}}{4} = \frac{{y - 5}}{{ - 2}} = \frac{z}{1}\). Khi đó vectơ chỉ phương của đường thẳng d có tọa độ là
Cho hình vuông ABCD cạnh \(a\) trên đường thẳng vuông góc với (ABCD) tại A ta lấy điểm S di động. Hình chiếu vuông góc của A lên SB, SD lần lượt là H, K. Thể tích lớn nhất của tứ diện ACHK bằng
Cho hình lăng trụ tam giác đều có cạnh đáy bằng \(2a\) và có các mặt bên đều là hình vuông. Thể tích khối lăng trụ đã cho bằng
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, hai mặt bên SAB và SAC cùng vuông góc với đáy, \(SB=2a, AB=BC=a\). Bán kính của mặt cầu ngoại tiếp hình chóp S.ABC là
Kí hiệu \(z_1, z_2, z_3, z_4\) là bốn nghiệm của phương trình \({z^4} + {z^2} - 6 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|\).
Cho hàm số\(y=f(x)\) có đồ thị \(y=f'(x)\) cắt trục Ox tại ba điểm có hoành độ như hình vẽ.
.png)
Khẳng định nào dưới đây có thể xảy ra?
Số đường tiệm cận ngang của đồ thị hàm số \(y = x + 1 + \sqrt {{x^2} + 2x + 3} \) là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), biết SA = 4. Gọi M, N lần lượt là chiều cao của A lên cạnh SB và SC. Thể tích khối tứ diện AMNC là
Tìm tập xác định của hàm số \(y = \sqrt {{{\log }_{\frac{1}{3}}}\left( {x - 3} \right)} .\)
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?
.png)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a, SA\) vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB) một góc bằng \(30^0\). Tính thể tích V của khối chóp.
Phương trình đường tròn (C) có tâm I(1;2) và tiếp xúc với đường thẳng \(\Delta :{\rm{ }}x--2y + 7 = 0\) là:
Với các số thực dương \(a,b \ne 1\), ta có các đồ thị hàm số \(y = {a^x},y = {\log _b}x\) được cho như hình vẽ bên. Mệnh đề nào sau đây đúng?
.png)


