Câu hỏi Đáp án 3 năm trước 56

Cho hai số thực x, y thỏa mãn:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaWG5b % WaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4naiaadMhacqGHRaWk % caaIYaGaamiEamaakaaabaGaaGymaiabgkHiTiaadIhaaSqabaGccq % GH9aqpcaaIZaWaaOaaaeaacaaIXaGaeyOeI0IaamiEaaWcbeaakiab % gUcaRiaaiodadaqadaqaaiaaikdacaWG5bWaaWbaaSqabeaacaaIYa % aaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa!4C9C! 2{y^3} + 7y + 2x\sqrt {1 - x} = 3\sqrt {1 - x} + 3\left( {2{y^2} + 1} \right)\) . Tìm giá trị lớn nhất của biểu thức P = x + 2y .

A. 8

B. 10

C. 4

Đáp án chính xác ✅

D. 6

Lời giải của giáo viên

verified ToanVN.com

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaWG5b % WaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4naiaadMhacqGHRaWk % caaIYaGaamiEamaakaaabaGaaGymaiabgkHiTiaadIhaaSqabaGccq % GH9aqpcaaIZaWaaOaaaeaacaaIXaGaeyOeI0IaamiEaaWcbeaakiab % gUcaRiaaiodadaqadaqaaiaaikdacaWG5bWaaWbaaSqabeaacaaIYa % aaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa!4C9C! 2{y^3} + 7y + 2x\sqrt {1 - x} = 3\sqrt {1 - x} + 3\left( {2{y^2} + 1} \right)\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsDiBlaaik % dadaqadaqaaiaadMhadaahaaWcbeqaaiaaiodaaaGccqGHsislcaaI % ZaGaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaWG5b % GaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRmaabmaabaGaamyE % aiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH9aqpcaaIYaWaaeWaae % aacaaIXaGaeyOeI0IaamiEaaGaayjkaiaawMcaamaakaaabaGaaGym % aiabgkHiTiaadIhaaSqabaGccqGHRaWkcaaIZaWaaOaaaeaacaaIXa % GaeyOeI0IaamiEaaWcbeaakiabgkHiTiaaikdadaGcaaqaaiaaigda % cqGHsislcaWG4baaleqaaaaa!5AF9! \Leftrightarrow 2\left( {{y^3} - 3{y^2} + 3y - 1} \right) + \left( {y - 1} \right) = 2\left( {1 - x} \right)\sqrt {1 - x} + 3\sqrt {1 - x} - 2\sqrt {1 - x} \)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsDiBlaaik % dadaqadaqaaiaadMhacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWba % aSqabeaacaaIZaaaaOGaey4kaSYaaeWaaeaacaWG5bGaeyOeI0IaaG % ymaaGaayjkaiaawMcaaiabg2da9iaaikdadaqadaqaamaakaaabaGa % aGymaiabgkHiTiaadIhaaSqabaaakiaawIcacaGLPaaadaahaaWcbe % qaaiaaiodaaaGccqGHRaWkdaGcaaqaaiaaigdacqGHsislcaWG4baa % leqaaOGaaGPaVlaaykW7daqadaqaaiaaigdaaiaawIcacaGLPaaaaa % a!5344! \Leftrightarrow 2{\left( {y - 1} \right)^3} + \left( {y - 1} \right) = 2{\left( {\sqrt {1 - x} } \right)^3} + \sqrt {1 - x} \,\,\left( 1 \right)\)

Xét hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada % qaaiaadshaaiaawIcacaGLPaaacqGH9aqpcaaIYaGaamiDamaaCaaa % leqabaGaaG4maaaakiabgUcaRiaadshaaaa!3EE0! f\left( t \right) = 2{t^3} + t\) trên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaajibabaGaaG % imaiaacUdacaaMc8Uaey4kaSIaeyOhIukacaGLBbGaayzkaaaaaa!3D13! \left[ {0;\, + \infty } \right)\).

Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAgagaqbam % aabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaiAdacaWG0bWa % aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaaa!3EB1! f'\left( t \right) = 6{t^2} + 1 > 0\) với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcGiIiaads % hacqGHLjYScaaIWaaaaa!3A32! \forall t \ge 0\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkDiElaadA % gadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa!3BB3! \Rightarrow f\left( t \right)\) luôn đồng biến trên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaajibabaGaaG % imaiaacUdacaaMc8Uaey4kaSIaeyOhIukacaGLBbGaayzkaaaaaa!3D13! \left[ {0;\, + \infty } \right)\).

Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG % ymaaGaayjkaiaawMcaaiabgsDiBlaadMhacqGHsislcaaIXaGaeyyp % a0ZaaOaaaeaacaaIXaGaeyOeI0IaamiEaaWcbeaaaaa!40F5! \left( 1 \right) \Leftrightarrow y - 1 = \sqrt {1 - x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsDiBlaadM % hacqGH9aqpcaaIXaGaey4kaSYaaOaaaeaacaaIXaGaeyOeI0IaamiE % aaWcbeaaaaa!3EA6! \Leftrightarrow y = 1 + \sqrt {1 - x} \).

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkDiElaadc % facqGH9aqpcaWG4bGaey4kaSIaaGOmaiaadMhacqGH9aqpcaWG4bGa % ey4kaSIaaGOmaiabgUcaRiaaikdadaGcaaqaaiaaigdacqGHsislca % WG4baaleqaaaaa!45B9! \Rightarrow P = x + 2y = x + 2 + 2\sqrt {1 - x} \) với  \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam % iEaiabgsMiJkaaigdaaiaawIcacaGLPaaaaaa!3ADF! \left( {x \le 1} \right)\).

Xét hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaqada % qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIYaGaey4kaSIaamiE % aiabgUcaRiaaikdadaGcaaqaaiaaigdacqGHsislcaWG4baaleqaaa % aa!415A! g\left( x \right) = 2 + x + 2\sqrt {1 - x} \) trên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaajadabaGaey % OeI0IaeyOhIuQaai4oaiaaykW7caaIXaaacaGLOaGaayzxaaaaaa!3D3E! \left( { - \infty ;\,1} \right]\).

Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEgagaqbam % aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaigdacqGHsisl % daWcaaqaaiaaigdaaeaadaGcaaqaaiaaigdacqGHsislcaWG4baale % qaaaaaaaa!3FA0! g'\left( x \right) = 1 - \frac{1}{{\sqrt {1 - x} }}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala % aabaWaaOaaaeaacaaIXaGaeyOeI0IaamiEaaWcbeaakiabgkHiTiaa % igdaaeaadaGcaaqaaiaaigdacqGHsislcaWG4baaleqaaaaaaaa!3E31! = \frac{{\sqrt {1 - x} - 1}}{{\sqrt {1 - x} }}\) .\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEgagaqbam % aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaicdacqGHshI3 % caWG4bGaeyypa0JaaGimaaaa!4041! g'\left( x \right) = 0 \Rightarrow x = 0\)

Bảng biến thiên g(x):

Từ bảng biến thiên của hàm số g(x) suy ra giá trị lớn nhất của P là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci % yBaiaacggacaGG4baaleaadaqcWaqaaiabgkHiTiabg6HiLkaacUda % caaMc8UaaGymaaGaayjkaiaaw2faaaqabaGccaWGNbWaaeWaaeaaca % WG4baacaGLOaGaayzkaaGaeyypa0JaaGinaaaa!458B! \mathop {\max }\limits_{\left( { - \infty ;\,1} \right]} g\left( x \right) = 4\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho mặt phẳng P đi qua các điểm A ( -2; 0 ; 0),B( 0; 3; 0) ,C( 0; 0 ; -3) . Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau?

 

Xem lời giải » 3 năm trước 91
Câu 2: Trắc nghiệm

Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiqadk % eagaqbaiabgwQiEjaadkeaceWGdbGbauaaaaa!3AD8! AB' \bot BC'\) . Tính thể tích V của khối lăng trụ đã cho.

Xem lời giải » 3 năm trước 69
Câu 3: Trắc nghiệm

Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaciiBaiaac6gadaqadaqaaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaaI5aaacaGLOaGaayzkaaGaaeizaiaadIhaaSqaai % aaicdaaeaacaaI0aaaniabgUIiYdGccqGH9aqpcaWGHbGaciiBaiaa % c6gacaaI1aGaey4kaSIaamOyaiGacYgacaGGUbGaaG4maiabgUcaRi % aadogaaaa!4E85! \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right){\rm{d}}x} = a\ln 5 + b\ln 3 + c\), trong đó a,b ,c  là các số nguyên. Giá trị của biểu thức T = a + b + c là

Xem lời giải » 3 năm trước 67
Câu 4: Trắc nghiệm

Trong không gian ( Oxyz) , cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox,Oy,Oz  lần lượt tại các điểm A,B ,C  . Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC .

Xem lời giải » 3 năm trước 67
Câu 5: Trắc nghiệm

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và \( OB = OC = a\sqrt 6 \), OA =a . Tính góc giữa hai mặt phẳng (ABC) và (OBC) .

Xem lời giải » 3 năm trước 64
Câu 6: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d vuông góc với mặt phẳng (P):4x - z + 3 = 0 . Vec-tơ nào dưới đây là một vec-tơ chỉ phương của đường thẳng d?

Xem lời giải » 3 năm trước 64
Câu 7: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGpbGaamyqaaGaay51GaGaeyypa0JaaGOmamaaFiaabaGaamyAaaGa % ay51GaGaey4kaSIaaGOmamaaFiaabaGaamOAaaGaay51GaGaey4kaS % IaaGOmamaaFiaabaGaam4AaaGaay51Gaaaaa!4629! \overrightarrow {OA} = 2\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k\), B( -2; 2 ; 0) và C( 4; 1 ; -1 ). Trên mặt phẳng (Oxz), điểm nào dưới đây cách đều ba điểm A, B, C.

Xem lời giải » 3 năm trước 63
Câu 8: Trắc nghiệm

Cho \(f(x) ; g(x)\) là các hàm số xác định và liên tục trên R. Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải » 3 năm trước 63
Câu 9: Trắc nghiệm

Cho đa giác đều 32 cạnh. Gọi S là tập hợp các tứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của đa giác đều. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một hình chữ nhật là

Xem lời giải » 3 năm trước 63
Câu 10: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcacqGH9aqpcqGHsisldaWhcaqaaiaadMgaaiaawEni % aiabgUcaRiaaikdadaWhcaqaaiaadQgaaiaawEniaiabgkHiTiaaio % dadaWhcaqaaiaadUgaaiaawEniaaaa!45B2! \overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) . Tọa độ của vectơ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcaaaa!388E! \overrightarrow a \) là:

Xem lời giải » 3 năm trước 62
Câu 11: Trắc nghiệm

Người ta trồng hoa vào phần đất được tô màu đen được giới hạn bởi cạnh AB,CD ,  đường trung bình MN của mảnh đất hình chữ nhật ABCD và một đường cong hình sin . Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaaIYaGaeqiWda3aaeWaaeaacaWGTbaacaGLOaGaayzk % aaaaaa!3D7A! AB = 2\pi \left( m \right)\),AD = 2(m) . Tính diện tích phần còn lại

Xem lời giải » 3 năm trước 62
Câu 12: Trắc nghiệm

Cho hàm số \(y = f (x)\) có đạo hàm và liên tục trên R . Biết rằng đồ thị hàm số \(y = f' (x)\) như hình  dưới đây.

Lập hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiaa % dIhaaiaawIcacaGLPaaacqGHsislcaWG4bWaaWbaaSqabeaacaaIYa % aaaOGaeyOeI0IaamiEaaaa!42A4! g\left( x \right) = f\left( x \right) - {x^2} - x\). Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 61
Câu 13: Trắc nghiệm

Cho hàm số y = f(x) có đạo hàm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWG % 4bGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa % aakmaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % ikdacaWG4baacaGLOaGaayzkaaaaaa!45B6! f'\left( x \right) = {\left( {x - 1} \right)^2}\left( {{x^2} - 2x} \right)\) với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam % iEaiabgIGiolabl2riHcaa!3AB4! \forall x \in R\). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiIdacaWG % 4bGaey4kaSIaamyBaaGaayjkaiaawMcaaaaa!3ED7! f\left( {{x^2} - 8x + m} \right)\) có 5 điểm cực trị?

Xem lời giải » 3 năm trước 60
Câu 14: Trắc nghiệm

Cho hàm số \(y = f (x)\) liên tục, luôn dương trên \([0;3]\) và thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaa % bsgacaWG4baaleaacaaIWaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0 % JaaGinaaaa!434A! I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} = 4\). Khi đó giá trị của tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaWaaeWaaeaacaWGLbWaaWbaaSqabeaacaaIXaGaey4k % aSIaciiBaiaac6gadaqadaqaaiaadAgadaqadaqaaiaadIhaaiaawI % cacaGLPaaaaiaawIcacaGLPaaaaaGccqGHRaWkcaaI0aaacaGLOaGa % ayzkaaGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIZaaaniabgUIiYd % aaaa!4AD3! K = \int\limits_0^3 {\left( {{e^{1 + \ln \left( {f\left( x \right)} \right)}} + 4} \right){\rm{d}}x} \) là:

Xem lời giải » 3 năm trước 60
Câu 15: Trắc nghiệm

Cho x, y là các số thực thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgY % da8iaadIhacqGH8aapdaGcaaqaaiaadMhaaSqabaaaaa!3ACD! 1 < x < \sqrt y \). Tìm giá trị nhỏ nhất của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9maabmaabaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadIhaaeqa % aOGaamyEaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaai % aaikdaaaGccqGHRaWkcaaI4aWaaeWaaeaaciGGSbGaai4BaiaacEga % daWgaaWcbaWaaSaaaeaadaGcaaqaaiaadMhaaWqabaaaleaacaWG4b % aaaaqabaGcdaWcaaqaamaakaaabaGaamyEaaWcbeaaaOqaamaakaaa % baGaamiEaaWcbeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik % daaaaaaa!4C97! P = {\left( {{{\log }_x}y - 1} \right)^2} + 8{\left( {{{\log }_{\frac{{\sqrt y }}{x}}}\frac{{\sqrt y }}{{\sqrt x }}} \right)^2}\)

Xem lời giải » 3 năm trước 60

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »