Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B) sao cho AM = x,BN = y,x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60°. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN > 8).
A. \(2\sqrt {21} \)
B. 12
C. \(2\sqrt {39} \)
D. 13
Lời giải của giáo viên
ToanVN.com
Dựng hình chữ nhật ABNC.
\(\left( {\widehat {AM,BN}} \right) = \left( {\widehat {AM,AC}} \right) = 60^\circ \)
Ta có \(\left\{ \begin{array}{l}
AB \bot AM\\
AB \bot BN
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
AB \bot AM\\
AB \bot AC
\end{array} \right. \Rightarrow AB \bot \left( {ACM} \right)\)
\({V_{ABNM}} = {V_{MABC}} = \frac{1}{3}AB.{S_{ACM}} = \frac{1}{6}AB.AC.AM\sin \widehat {CAM} = \frac{1}{6}.6.x.y.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}xy\)
\({V_{ABNM}} = \frac{{\sqrt 3 }}{2}xy \le \frac{{\sqrt 3 }}{2}\frac{{{{\left( {x + y} \right)}^2}}}{4} = 8\sqrt 3 \). Dấu bằng xảy ra khi và chỉ khi x = y = 4.
Khi đó AM = BN = AC = 4
Lại có \(AB//CN \Rightarrow CN \bot \left( {AMC} \right) \Rightarrow CN \bot CM \Rightarrow M{N^2} = C{M^2} + C{N^2}\)
Mặt khác \(\widehat {MAC} = 60^\circ \) hoặc \(\widehat {MAC} = 120^\circ \)
Trường hợp 1: \(\widehat {MAC} = 60^\circ \Rightarrow \) \(\Delta AMC\) đều \( \Rightarrow CM = 4 \Rightarrow MN = \sqrt {{4^2} + {6^2}} = 2\sqrt {13} \)
Trường hợp 2: \(\widehat {MAC} = 120^\circ \)
\( \Rightarrow CM = \sqrt {A{M^2} + A{C^2} - 2AM.AC\cos 120^\circ } = \sqrt {48} \Rightarrow MN = \sqrt {48 + {6^2}} = 2\sqrt {41} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính đạo hàm của hàm số \(y = \tan \left( {\frac{\pi }{4} - x} \right)\):
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là trung điểm BC. Tính thể tích V của khối lăng trụ đó.
Cho cấp số cộng (un) có số hạng tổng quát là un = 3n - 2. Tìm công sai d của cấp số cộng.
Cho phương trình:
\({\sin ^3}x + 2\sin x + 3 = \left( {2{{\cos }^3}x + m} \right)\sqrt {2{{\cos }^3}x + m - 2} + 2{\cos ^3}x + {\cos ^2}x + m\).
Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm \(x \in \left[ {0;\frac{{2\pi }}{3}} \right)\)?
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Cho hàm số y = f(x) xác định trên R và hàm số y = f’(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \(y = f\left( {{x^2} - 3} \right)\).
.png)
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
.png)
Cho cấp số nhân (un) có u1 = -3, công bội q = -2. Hỏi -192 là số hạng thứ mấy của (un) ?
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết \(A\left( {1;3} \right),B\left( { - 2; - 2} \right),C\left( {3;1} \right)\). Tính cosin góc A của tam giác.
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số \(y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}\) là
Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x - 3}}{{x - 1}}\) là đường thẳng có phương trình?
Cho tứ diện MNPQ. Gọi I; J; K lần lượt là trung điểm của các cạnh MN, MP, MQ. Tỉ số thể tích \(\frac{{{V_{MIJK}}}}{{{V_{MNPQ}}}}\) bằng


