Cho hai điểm A(3;3;1),B(0;2;1), mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaaiOoaiaadIhacqGHRaWkcaWG5bGaey4k % aSIaamOEaiabgkHiTiaaiEdacqGH9aqpcaaIWaaaaa!413C! \left( P \right):x + y + z - 7 = 0\). Đường thẳng d nằm trên (P) sao cho mọi điểm của d cách đều hai điểm A,B có phương trình là
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe
% qaaiaadIhacqGH9aqpcaWG0baabaGaamyEaiabg2da9iaaiEdacqGH
% sislcaaIZaGaamiDaaqaaiaadQhacqGH9aqpcaaIYaGaamiDaaaaca
% GL7baaaaa!4334!
\left\{ \begin{array}{l}
x = t\\
y = 7 - 3t\\
z = 2t
\end{array} \right.\)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe
% qaaiaadIhacqGH9aqpcqGHsislcaWG0baabaGaamyEaiabg2da9iaa
% iEdacqGHsislcaaIZaGaamiDaaqaaiaadQhacqGH9aqpcaaIYaGaam
% iDaaaacaGL7baaaaa!4421!
\left\{ \begin{array}{l}
x = - t\\
y = 7 - 3t\\
z = 2t
\end{array} \right.\)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe
% qaaiaadIhacqGH9aqpcaWG0baabaGaamyEaiabg2da9iaaiEdacqGH
% RaWkcaaIZaGaamiDaaqaaiaadQhacqGH9aqpcaaIYaGaamiDaaaaca
% GL7baaaaa!4329!
\left\{ \begin{array}{l}
x = t\\
y = 7 + 3t\\
z = 2t
\end{array} \right.\)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe
% qaaiaadIhacqGH9aqpcaaIYaGaamiDaaqaaiaadMhacqGH9aqpcaaI
% 3aGaeyOeI0IaaG4maiaadshaaeaacaWG6bGaeyypa0JaaGOmaiaads
% haaaGaay5Eaaaaaa!43F0!
\left\{ \begin{array}{l}
x = 2t\\
y = 7 - 3t\\
z = 2t
\end{array} \right.\)
Lời giải của giáo viên
ToanVN.com
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGbbGaamOqaaGaay51GaGaeyypa0ZaaeWaaeaacqGHsislcaaIZaGa % ai4oaiabgkHiTiaaigdacaGG7aGaaGimaaGaayjkaiaawMcaaaaa!414E! \overrightarrow {AB} = \left( { - 3; - 1;0} \right)\); \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaabm % aabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGG7aWaaSaaaeaacaaI % 1aaabaGaaGOmaaaacaGG7aGaaGymaaGaayjkaiaawMcaaaaa!3D98! I\left( {\frac{3}{2};\frac{5}{2};1} \right)\) là trung điểm của AB.
Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) là mặt phẳng trung trực của AB và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaey % ypa0ZaaeWaaeaacqaHXoqyaiaawIcacaGLPaaacqGHPiYXdaqadaqa % aiaadcfaaiaawIcacaGLPaaaaaa!3F84! \Delta = \left( \alpha \right) \cap \left( P \right)\). Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa!375A! \Delta \) chính là đường thẳng thuộc mặt phẳng (P) và cách đều hai điểm A,B.
Phương trình mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) đi qua \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaabm % aabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGG7aWaaSaaaeaacaaI % 1aaabaGaaGOmaaaacaGG7aGaaGymaaGaayjkaiaawMcaaaaa!3D98! I\left( {\frac{3}{2};\frac{5}{2};1} \right)\) và có véc tơ pháp tuyến là:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGbbGaamOqaaGaay51GaGaeyypa0ZaaeWaaeaacqGHsislcaaIZaGa % ai4oaiabgkHiTiaaigdacaGG7aGaaGimaaGaayjkaiaawMcaaaaa!414E! \overrightarrow {AB} = \left( { - 3; - 1;0} \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG % 4mamaabmaabaGaamiEaiabgkHiTmaalaaabaGaey4mamdabaGaaGOm % aaaaaiaawIcacaGLPaaacqGHsisldaqadaqaaiaadMhacqGHsislda % WcaaqaaiaaiwdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabg2da9iaa % icdacqGHuhY2caaIZaGaamiEaiabgUcaRiaadMhacqGHsislcaaI3a % Gaeyypa0JaaGimaaaa!4DDF! - 3\left( {x - \frac{3}{2}} \right) - \left( {y - \frac{5}{2}} \right) = 0 \Leftrightarrow 3x + y - 7 = 0\)
Khi đó d là đường giao tuyến của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) và (P).
Véctơ chỉ phương của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWhcaqaaiaadwhadaWgaaWcbaGaamizaaqabaaakiaawEniaiab % g2da9maadmaabaWaa8HaaeaacaWGUbWaaSbaaSqaamaabmaabaGaeq % ySdegacaGLOaGaayzkaaaabeaaaOGaay51GaGaaiilamaaFiaabaGa % amOBamaaBaaaleaadaqadaqaaiaadcfaaiaawIcacaGLPaaaaeqaaa % GccaGLxdcaaiaawUfacaGLDbaacqGH9aqpdaqadaqaaiabgkHiTiaa % igdacaGG7aGaaG4maiaacUdacqGHsislcaaIYaaacaGLOaGaayzkaa % Gaeyypa0JaeyOeI0YaaeWaaeaacaaIXaGaai4oaiabgkHiTiaaioda % caGG7aGaaGOmaaGaayjkaiaawMcaaaaa!5A85! d:\overrightarrow {{u_d}} = \left[ {\overrightarrow {{n_{\left( \alpha \right)}}} ,\overrightarrow {{n_{\left( P \right)}}} } \right] = \left( { - 1;3; - 2} \right) = - \left( {1; - 3;2} \right)\), d đi qua \(C(0;7;0)\).
Vậy d có phương trình tham số là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadIhacqGH9aqpcaWG0baabaGaamyEaiabg2da9iaaiEdacqGH % sislcaaIZaGaamiDaaqaaiaadQhacqGH9aqpcaaIYaGaamiDaaaaca % GL7baaaaa!4334! \left\{ \begin{array}{l} x = t\\ y = 7 - 3t\\ z = 2t \end{array} \right.\) ( t là tham số).
CÂU HỎI CÙNG CHỦ ĐỀ
Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaM5cvLHfij5gC1rhimfMBNvxyNvga7TNm951EYG % xlX0xFTWLzYf2y7ftF7HtF9adatCvAUfeBSjuyZL2yd9gzLbvyNv2C % aerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLD % harqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr % 0xc9pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYR % Xxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaaba % aaaaaaaapeGaaGOma8aadaahaaWcbeqaa8qacaaIYaGaamiEaiabgk % HiTiaaigdaaaGccqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGa % aGioaaaacqGH9aqpcaaIWaaaaa!4F78! {2^{2x - 1}} - \frac{1}{8} = 0\) là
Trong không gian với hệ tọa độ Oxyx , cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHsislcaaIXaaabaGaaGymaaaacqGH9aqp % daWcaaqaaiaadMhacqGHsislcaaIYaaabaGaaGymaaaacqGH9aqpda % WcaaqaaiaadQhacqGHsislcaaIXaaabaGaaGOmaaaaaaa!43FB! d:\frac{{x - 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 1}}{2}\),A(2;1;4) . Gọi H(a;b;c) là điểm thuộc d sao cho AH có độ dài nhỏ nhất. Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9iaadggadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWGIbWaaWba % aSqabeaacaaIZaaaaOGaey4kaSIaam4yamaaCaaaleqabaGaaG4maa % aaaaa!3F1D! T = {a^3} + {b^3} + {c^3}\).
Tổng số đỉnh, số cạnh và số mặt của hình lập phương là
Hàm số \(y = f(x)\) liên tục và có bảng biến thiên trong đoạn \([-1;3]\) cho trong hình bên. Gọi M là giá trị lớn nhất của hàm số \(f(x)\) trên đoạn \([-1;3]\). Tìm mệnh đề đúng?
.png)
Trong không gian Oxyz, cho hình thoi ABCD với A(-1;2;1) ; B (2;3;2). Tâm I của hình thoi thuộc đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHRaWkcaaIXaaabaGaeyOeI0IaaGymaaaa % cqGH9aqpdaWcaaqaaiaadMhaaeaacqGHsislcaaIXaaaaiabg2da9m % aalaaabaGaamOEaiabgkHiTiaaikdaaeaacaaIXaaaaaaa!4421! d:\frac{{x + 1}}{{ - 1}} = \frac{y}{{ - 1}} = \frac{{z - 2}}{1}\). Tọa độ đỉnh D là
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadggacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamOy % aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGJbGaamiEai % abgUcaRiaaigdaaaa!42EC! y = a{x^3} + b{x^2} + cx + 1\) có bảng biến thiên như sau:
.png)
Mệnh đề nào dưới đây đúng?
Cho đồ thị hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
.png)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO = a. Khoảng cách giữa SC và AB bằng
Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaWG6b % WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOnaiaadQhacqGHRaWk % caaI1aGaeyypa0JaaGimaaaa!3EA3! 2{z^2} - 6z + 5 = 0\). Số phức \(iz_0\) bằng
Cho A(1;-3;2) và mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqadaqaaiaadcfaaiaawIcacaGLPaaacaGG6aGaaGOmaiaadIha % cqGHsislcaWG5bGaey4kaSIaaG4maiaadQhacqGHsislcaaIXaGaey % ypa0JaaGimaaaa!42DA! \left( P \right):2x - y + 3z - 1 = 0\) . Viết phương trình tham số đường thẳng d đi qua A, vuông góc với (P)
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0ZaaSaaaeaacaWG4bGaey4kaSIaaGymaaqaaiaa % dIhacqGHsislcaaIYaaaaiaaywW7caGGOaGaam4qaiaacMcaaaa!4116! y = \frac{{x + 1}}{{x - 2}}\quad (C)\) . Gọi d là khoảng cách từ giao điểm của hai đường tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất mà d có thể đạt được là:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEaiabgUcaRiaaikdaaeaacaWG4bGaey4kaSIa % aGymaaaaaaa!3D3D! y = \frac{{x + 2}}{{x + 1}}\) có đồ thị là (C). Gọi d là khoảng cách từ giao điểm 2 tiệm cận của (C) đến một tiếp tuyến bất kỳ của (C). Giá trị lớn nhất có thể đạt được là:
Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu \(u_1\), công sai d, \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw % MiZkaaikdacaGGUaaaaa!3A1A! n \ge 2.\) ?
Đồ thị (C) của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqabeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEaiabgUcaRiaaigdaaeaacaWG4bGaeyOeI0Ia % aGymaaaaaaa!3D48! y = \frac{{x + 1}}{{x - 1}}\) và đường thẳng d; y = 2x -1 cắt nhau tại hai điểm A và B khi đó độ dài đoạn AB bằng?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( -3;1; -4) và B(1; -1;2). Phương trình mặt cầu (S) nhận AB làm đường kính là


