Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
Lời giải của giáo viên
ToanVN.com
Gọi \(\overrightarrow {{u_1}} = \left( { - 2;1;0} \right)\) và \(\overrightarrow {{u_2}} = \left( {0;1; - 1} \right)\) lần lượt là 1 VTCP của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\).
Gọi AB là đoạn vuông góc chung của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\), với \(A\left( {4 - 2t;t;3} \right) \in {d_1}\), \(B\left( {1;t'; - t'} \right) \in {d_2}\).
Ta có: \(\overrightarrow {AB} = \left( { - 3 + 2t;\,\,t' - t;\,\, - t' - 3} \right)\).
Vì AB là đoạn vuông góc chung của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) nên \(\left\{ \begin{array}{l}AB \bot {d_1}\\AB \bot {d_2}\end{array} \right.\).
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {{u_1}} = 0\\\overrightarrow {AB} .\overrightarrow {{u_2}} = 0\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\left( {2t - 3} \right).\left( { - 2} \right) + t' - t = 0\\t' - t + t' + 3 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' = - 1\end{array} \right.\)
\( \Rightarrow A\left( {2;1;3} \right),\,\,B\left( {1; - 1;1} \right)\).
Mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) nhận AB là đường kính.
\( \Rightarrow \) Tâm mặt cầu là trung điểm của AB, có tọa độ \(I\left( {\frac{3}{2};0;2} \right)\), bán kính \(R = IA = \sqrt {\frac{1}{4} + 1 + 1} = \frac{3}{2}\).
Vậy phương trình mặt cầu cần tìm là: \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( {3x} \right) = f\left( x \right) - 2x,\,\,\,\forall x \in \mathbb{R}\) và \(\int\limits_0^1 {f\left( x \right)dx = 5} \). Giá trị \(\int\limits_1^3 {f\left( x \right)dx} \) bằng
Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(O\left( {0;0;0} \right)\) và vuông góc với đường thẳng \(d:\,\,\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) là
Hai số phức \(\frac{3}{2} + \frac{{\sqrt 7 }}{2}i\) và \(\frac{3}{2} - \frac{{\sqrt 7 }}{2}i\) là nghiệm của phương trình nào sau đây?
Số giá trị nguyên của tham số m để hàm số \(y = {x^3} - m{x^2} + 3mx\) đồng biến trên \(\left( { - \infty ; + \infty } \right)\) là
Họ các nguyên hàm của hàm số \(f\left( x \right) = {\left( {2x + 3} \right)^5}\) là
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng
Trong không gian Oxyz, phương trình mặt cầu có tâm \(I\left( { - 1;1; - 2} \right)\) và đi qua điểm \(A\left( {2;1;2} \right)\) là
Cho tứ diện MNPQ có MQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP = 5\). Khoảng cách từ M đến mặt phẳng \(\left( {NPQ} \right)\) bằng
Giá trị dương của tham số m sao cho diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\) \(x = 0,\) \(x = m\) bằng 10 là
Có bao nhiêu số phức z thỏa mãn \(\left| {{z^2}} \right| = 2\left| {z - \overline z } \right|\) và \(\left| {z - 2 - 2i} \right| = \left| {z - 1 - i} \right|\) ?
Cho tích phân \(I = \int\limits_0^\pi {{x^2}\cos xdx} \) và đặt \(u = {x^2},\,\,dv = \cos xdx\). Mệnh đề nào sau đây là mệnh đề
đúng?
Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left( {f'\left( x \right)} \right)^2} + f\left( x \right).f''\left( x \right) = 15{x^4} + 12x,\,\,\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = f'\left( 0 \right) = 1\). Giá trị của \({f^2}\left( 1 \right)\) bằng:
Tích phân \(\int\limits_0^1 {\left( {3x + 1} \right)\left( {x + 3} \right)dx} \) bằng
Diện tích của hình phẳng giới hạn bởi hai đường thẳng \(y = 18{x^2}\) và \(y = 18x\) bằng


